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perspective!
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perspective!
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Full details (including all the biology):

= Biswas, Mitrophanoy, ..., Sharan (2023) Cell Rep Methods 3: 100628

= Sahu, Sullivan, Mitrophanoy, ..., Sharan (2023) PLOS Genet 19: €1010940



Pathogenicity of BRCAZ2 oncogene variants needs assessment
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Pathogenicity of BRCAZ2 oncogene variants needs assessment
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BRCAZ2 sequence mutations

=

Different BRCAZ2 variants

=

Predisposition to breast and
ovarian cancer

~1.3% breast-cancer patients have pathogenic BRCA2 variants (CARRIERS analysis)
17,000+ BRCAZ2 variants in ClinVar database; 3,000+ are of uncertain significance
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How do we know which BRCAZ2 variants are likely to be pathogenic?

By using a functional assay!
Variant 1
VariantZ\
Variant 3 \
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Red: pathogenic variant American College of Medical Genetics and Genomics:

Blue: benign vaniant o “A well-established functional assay is strong evidence to
Black: VUS (variant of uncertain significance) classify variants”

Biswas, Mitrophanov et al., Cell Rep Methods 2023



How do we know which BRCAZ2 variants are likely to be pathogenic?

By using a functional assay!
Variant 1
VariantZ\
Variant 3 \
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Experimental setup for data generation for 223 BRCAZ2 variants
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Experimental setup for data generation for 223 BRCAZ2 variants
(streamlined)
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Experimental setup for data generation for 223 BRCAZ2 variants

Generation
of human
BRCA?2
variants

Function score: frequency of variants in the final pool relative to the initial pool (determined via
next-generation sequencing)
One data point: the function score for one variable (HAT or Cis or Ola) for one BRCAZ2 variant
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Requirements for the statistical methodology

Requirements

= Should calculate probabilities of impact
on function (PIFs)

» The probabilities should not be “too
binary”

» Should use the accepted PIF
thresholds for benign and pathogenic
(0.05 and >0.99, respectively)



Requirements for the statistical methodology

Requirements

Should calculate probabilities of impact
on function (PIFs)

The probabilities should not be “too

binary”

= Supervised: use only labeled data
Should use the accepted PIF iIn model training (fitting)
thresholds for benign and pathogenic = Semi-supervised: use all available
(20.05 and >0.99, respectively) data in model training (fitting)

Should use semi-supervised learning
(expected to outperform supervised-
learning approaches; e.g., VarCall
software)




Model assessment in statistics

Descriptive and inferential statistics

How well the model captures the
statistical distributions in the data set;
how well it allows us to characterize the
distributions in the general population
based on the statistical sample

We use this during model construction



Model assessment in statistics

Descriptive and inferential statistics

How well the model captures the
statistical distributions in the data set;
how well it allows us to characterize the
distributions in the general population
based on the statistical sample

We use this during model construction

Statistical learning and machine learning (Al, etc.)

Predictive performance !!!

Standard measures: accuracy (fraction of correctly

predicted benign and pathogenic variants),
sensitivity (fraction of correctly predicted
pathogenic variants), specificity (fraction of
correctly predicted benign variants)

Standard approach: cross-validation (train the model

on a subset of the data, test on the other subset;
repeat for different data partitions)



Initial analysis and approaches

Technical decisions made
(data preprocessing)

=  Should we filter out
outliers?

= What do we do with the
two “data pools”
(biological replicates)?

= Should we log-transform
the data?

...(many more)



Initial analysis and approaches

Technical decisions made

(data preprocessing)

Should we filter out
outliers?

What do we do with the
two “data pools”
(biological replicates)?

Should we log-transform
the data?

...(many more)

Logistic regression

Linear and quadratic
discriminant analysis

Mixture modeling with non-
normal components

Supervised-learning
approach to mixture modeling



Variants

The approach that worked

N =223 BRCAZ2 variants; Ny, = 16 labeled benign and N, = 27 labeled pathogenic
(the rest, N, are VUS = variants of uncertain significance)

Data distributions

HAT Cis Ola
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Variants
Variants

Biswas, Mitrophanov et al., Cell Rep Methods 2023



The approach that worked

N =223 BRCAZ2 variants; Ny, = 16 labeled benign and N, = 27 labeled pathogenic
(the rest, N, are VUS = variants of uncertain significance)

Data distributions

HAT Cis Ola
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Function score Function score Function score

Variants
Variants
Variants

» Check the benign and pathogenic distributions for normality (fit with a bell-shaped curve)

Biswas, Mitrophanov et al., Cell Rep Methods 2023



HAT

Variants

-V,

The approach that worked

N =223 BRCAZ2 variants; Ny, = 16 labeled benign and N, = 27 labeled pathogenic
(the rest, N, are VUS = variants of uncertain significance)

Variants

Function score

Data distributions

Cis

|

Function score

Variants

P

Ola

Function score

» Check the benign and pathogenic distributions for normality (fit with a bell-shaped curve)
Fit the overall, two-peaked distribution using a combination (mixture) of benign and pathogenic distributions

Biswas, Mitrophanov et al., Cell Rep Methods 2023



(the rest, N, are VUS = variants of uncertain significance)

HAT

Variants

The approach that worked

N =223 BRCAZ2 variants; Ny, = 16 labeled benign and N, = 27 labeled pathogenic
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Function score
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Function score

» Check the benign and pathogenic distributions for normality (fit with a bell-shaped curve)
= Fit the overall, two-peaked distribution using a combination (mixture) of benign and pathogenic distributions
= Use the parameters from the fits with some math to calculate PIFs (probabilities of impact on function)

Biswas, Mitrophanov et al., Cell Rep Methods 2023



HAT

Variants

The approach that worked

N =223 BRCAZ2 variants; Ny, = 16 labeled benign and N, = 27 labeled pathogenic
(the rest, N, are VUS = variants of uncertain significance)

L) PP(HAT)
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Function score

Variants

Data distributions

Cis

W

L) PP(Cis)

|

Function score

Variants

Ola

Function score

Check the benign and pathogenic distributions for normality (fit with a bell-shaped curve)
Fit the overall, two-peaked distribution using a combination (mixture) of benign and pathogenic distributions
Use the parameters from the fits with some math to calculate PIFs (probabilities of impact on function)
Consider alternative models (supervised-learning and/or one input variable only, HAT or Cis or Ola)

PP(HAT)
PP(Cis) —PIF
PP(Ola)

PP(HAT) } PIF

Biswas, Mitrophanov et al., Cell Rep Methods 2023



Our main methodology: +
+ +

- N =223 BRCAZ2 variants; N, = 16 labeled benign and N, = 27 labeled pathogenic (the rest, N, are VUS =
variants of uncertain significance)

- 3 numerical variables: HAT, Cis, and Ola (function scores), with values for every BRCAZ2 variant

- For each variable, distribution density is modeled independently as a normal mixture:

g (%, p, My, vy, My, ) = pf (x,mp,w,) + (1= p)f (1, 73)

Biswas, Mitrophanov et al., Cell Rep Methods 2023



Our main methodology: +
+ +

- N =223 BRCAZ2 variants; N, = 16 labeled benign and N, = 27 labeled pathogenic (the rest, N, are VUS =
variants of uncertain significance)

- 3 numerical variables: HAT, Cis, and Ola (function scores), with values for every BRCAZ2 variant

- For each variable, distribution density is modeled independently as a normal mixture:

g (%, p, My, vy, My, ) = pf (x,mp,w,) + (1= p)f (1, 73)

- Parameters are estimated via maximum-likelihood fits (semi-supervised learning):
Np Np Ny
b
l(pr My, Up, Mp, Vp | X) — pr (xi(p)’ my, vp) X 1_[(1 — p)f (Xl( );mbr vb) X 1_[9 (xi(u)' P, My, Vp, Mp, vb)
i=1 i=1 i=1

- Bayes formula (empirical Bayes) for

probabilities of pathogenicity: - Heuristic PIF formulas for each BRCA2 variant:

Full:  PIF; = PP,(HAT) + (1 — PP;,(HAT))PP;(Cis)PP;(Ola)
Alt.: PIF; = PP;,(HAT) OR PIF; = PP;(Cis) OR PIF; = PP;(Ola)

PP, = pf(xl-,mp,vp)
g(x;,p, My, Uy, My, vp)

Biswas, Mitrophanov et al., Cell Rep Methods 2023



Validation of the computational predictions

Internal validation: K-fold cross-validation (CV) with K =3, 6, 9, 43 (K = 43 is leave-one-out CV)
Basis: fixed benign and pathogenic PIF thresholds (£0.05 and >0.99, respectively)

Main performance metric: accuracy (% correctly classified BRCAZ2 variants,
averaged across folds)

Full algorithm version (semi-supervised, HAT + Cis + Ola):
CV accuracy = 100% for all K values

External validation: information from diverse sources

Biswas, Mitrophanov et al., Cell Rep Methods 2023



Sample Quantiles Sample Quantiles

Sample Quantiles

Results for data distributions: normality and fitting (mixture model)
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Results for data distributions: normality and fitting (mixture model)
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Probability of impact on function (PIF)
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Computed probabilities of impact on function (PIFs)

Full model: HAT + Cisplatin + Olaparib HAT
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Probability of impact on function (PIF)

Computed probabilities of impact on function (PIFs)

Full model: HAT + Cisplatin + Olaparib Cisplatin
i S —— .
Pathogenic threshold (0.99)
2 - m
o o
=
o
©
c
o c CATI0T ¢ -E
© c
. @]
VUS (variant of S
uncertain S
> significance) E
S G
Benign g’
Pathogenic %
o VUS '8
© a
Benign threshold (0.05) ¢ TRREHS “
| | | | | | I i) | |
0 50 100 150 200 0 50 100 150 200
BRCAZ2 variants in order of increasing PIF BRCAZ2 variants in order of increasing PIF

Biswas, Mitrophanov et al., Cell Rep Methods 2023



Full model: HAT + Cisplatin + Olaparib
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Computed probabilities of impact on function (PIFs):
supervised learning



Computed probabilities of impact on function (PIFs):
supervised learning
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Computed probabilities of impact on function (PIFs):
supervised learning
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Computed probabilities of impact on function (PIFs):
supervised learning
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Computed probabilities of impact on function (PIFs):
supervised learning
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So, the full model (semi-supervised learning, all 3 variables) worked well...



So, the full model (semi-supervised learning, all 3 variables) worked well...

But a new experimental technology required a different statistical approach



The new data (N =599). an advanced methodology
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On the new data set, the calculated PIFs were “not binary enough...”
(i.e., not meeting the stringent classification thresholds of PIF < 0.05 and PIF > 0.99)

But WHY ?7



Apparent reason: insufficient distribution separation
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Cell Rep Methods 2023
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Apparent reason: insufficient distribution separation
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The probit regression model

Just like logistic (=logit)
regression, only with a different
link function instead of log-odds

The standard supervised-learning approach !!

Sahu, Sullivan, Mitrophanov et al., PLOS Genet 2023



The probit regression model
The standard approach !!

- N =599 BRCAZ variants; N, = 21 labeled benign and N, = 29 labeled pathogenic (the rest, N, are VUS =
variants of uncertain significance)

- 3 numerical variables: DMSO, Cis, and Ola (function scores), with values for every BRCAZ2 variant

- PIF formulas for each BRCAZ2 variant from classic probit regression:

Full:  probit(PIF;) = by + b;DMSO; + b,Cis; + b;0la;

Sahu, Sullivan, Mitrophanov et al., PLOS Genet 2023



The probit regression model
The standard approach !!

- N =599 BRCAZ variants; N, = 21 labeled benign and N, = 29 labeled pathogenic (the rest, N, are VUS =
variants of uncertain significance)

- 3 numerical variables: DMSO, Cis, and Ola (function scores), with values for every BRCAZ2 variant

- PIF formulas for each BRCAZ2 variant from classic probit regression:

Full:  probit(PIF,) = by + byDMSO; + b,Cis; + b;0la;
Alternatives: probit(PIF;) = by + b;DMSO;
probit(PIF;) = by + b,Cis;
probit(PIF;) = by + b,0Ola;

Validation approaches: cross-validation (accuracy, sensitivity, specificity), information from diverse sources

Sahu, Sullivan, Mitrophanov et al., PLOS Genet 2023



PlFs for the full (DMSO + Cisplatin + Olaparib) model

Probability of impact on function (PIF)
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Probability of impact on function (PIF)
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PlIFs for the Cisplatin and Olaparib models

Cisplatin

Olaparib
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Full probit-regression model: cross-validation results

Accuracy (K =5, 10, 50): 94%, 92%, and 92%

<Sensitivity, Specificity> (K =5, 10, 50): <92.5%, 93.3%>
<91.7%, 87.5%>
<93.1%, 90.5%>

Could we do better? Great question for future research!!

Sahu, Sullivan, Mitrophanov et al., PLOS Genet 2023



Summary

= Developed and validated new statistical approaches for computing probabilities of
Impact on function (PIF) for BRCAZ2 variants using functional-assay data
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Summary

Developed and validated new statistical approaches for computing probabilities of
Impact on function (PIF) for BRCAZ2 variants using functional-assay data

Predicted the pathogenicity of hundreds of BRCAZ2 variants of uncertain significance

Performance of a particular PIF-calculation method strongly depends on the statistical
distributions of the data

Accurate and robust out-of-distribution analysis (i.e., broad generalization capability)
appears to be a challenge in PIF calculation from functional-assay data
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