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NOTE ON ZEIFMAN’S BOUNDS ON THE RATE OF
CONVERGENCE FOR BIRTH–DEATH PROCESSES
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Abstract

It is shown that the method of deriving bounds on the rate of convergence for birth–
death processes developed by Zeifman can be effectively applied to stochastic models of
chemical reactions.
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1. Introduction: a bound due to Zeifman

This note is concerned with some practical applications of the method of bounding the
convergence rate of birth–death processes developed by Zeifman, singly and with Granovsky
[1]–[3], [7], [8]. Let X(t), t ≥ 0, be a nonhomogeneous birth–death process taking values in
a finite set S = {0, 1, . . . , N}, N ≥ 1, with birth rates {λn(t)} and death rates {µn(t)}, n ∈ S.
Put λN(t) ≡ µ0(t) ≡ 0; it is assumed that all other transition rates are nonnegative, locally
integrable functions on [0, ∞). For probability vectors p1 and p2, define p1(t) = p1P (0, t)

and p2(t) = p2P (0, t), where P (s, t), 0 ≤ s ≤ t , is the transition probability matrix of X(t).
Set

a(t) = min
0≤n<N

(λn(t) + µn+1(t) − λn+1(t) − µn(t)).

The results of [8] imply the following statement.

Proposition 1. If
∫ ∞

0 a(t) dt = +∞, then, when 0 ≤ s ≤ t ,

‖p2(t) − p1(t)‖ ≤ 4N exp

(
−

∫ t

s

a(u) du

)
‖p2(s) − p1(s)‖, (1)

where ‖ · ‖ denotes the absolute entry sum for vectors.

The bound (1) gives an estimate of the ‘mixing rate’ for X(t). If the chain is time-
homogeneous, then (1) provides a bound on the rate of convergence to stationarity. This
inequality can also be used in combination with sensitivity bounds to assess the stability of
X(t) under perturbations; see [4] and references cited therein.

It turns out that the condition of Proposition 1 is naturally satisfied for certain birth–death-
type stochastic models of reversible chemical reactions; see [6] for background on stochastic
modeling in chemical kinetics. This allows us to obtain simple bounds which relate the rate of
convergence to the parameters of the model. We give some examples in the next section.
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2. Application to stochastic models of chemical reactions

Convergence bounds, such as (1), can provide important information about the behaviour of
the chemical system under study. For reactions at a constant temperature, it is often desirable
to know when the reaction becomes close to the state of chemical equilibrium. Since this state
corresponds to the stationary state of the stochastic model, we can use convergence bounds
to assess the duration of the nonequilibrium phase. In the case of varying rates, we may
be interested in knowing when the dependence of the state probability distribution on the
initial distribution becomes negligible; again, we may use convergence bounds to answer this
question. The above-mentioned combination of sensitivity bounds and convergence bounds
(see Section 1) allows us to estimate the sensitivity of the system to changes in the reaction
rates; this may be necessary because, as a rule, there is some uncertainty about the numerical
values for the rates, which are derived from experimental data.

In this section we apply the bound (1) to the four stochastic models of chemical reactions
discussed in [5]. We suppose that the rate constants for the reactions, k1(t) and k2(t), may
vary with t (such variations can be caused by quasi-equilibrium temperature changes in the
reaction compartment). It is natural to assume that inf t≥0 k1(t) > 0 and inf t≥0 k2(t) > 0; this
assumption implies that Proposition 1 holds for the models considered.

Example 1. (The reaction A + B � C.) Suppose that the reaction takes place in a closed
compartment of volume V . Let α, β and γ be the respective initial numbers of molecules of
the species A, B and C; we assume that α ≥ β. Suppose that at time t the system contains
n1, n2 and n3 molecules of A, B and C respectively. If n1, n2 > 0, then, for the reaction
A + B → C, the probability that a single reaction event occurs in the time interval (t, t + �t)

equals (k1(t)/V )n1n2�t +o(�t); if n3 > 0, then, for the reaction C → A+B, the probability
is k2(t)n3�t + o(�t). It is easily seen that

n1 = α + γ − n3, n2 = β + γ − n3, 0 ≤ n3 ≤ β + γ.

Thus, the changes in the number of molecules of C may be described by a birth–death process
taking values in {0, 1, . . . , N}, where N = β + γ ; the transition rates are given by

λn(t) = k1(t)

V
(α + γ − n)(β + γ − n),

µn(t) = k2(t)n.

We obtain that

a(t) = k1(t)

V
(α − β + 1) + k2(t).

In the following examples, α, β, γ, δ denote nonnegative integers such that α ≥ β and
δ ≥ γ ; for further details, see [5] and references cited therein.

Example 2. (The reaction A + B � C + D.) The corresponding stochastic model is a birth–
death process over {0, 1, . . . , N}, where N = β + γ ; the birth and death rates are given by

λn(t) = k1(t)

V
(α + γ − n)(β + γ − n),

µn(t) = k2(t)

V
n(n + δ − γ ).
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We obtain that

a(t) =

⎧⎪⎪⎨
⎪⎪⎩

k1(t)

V
(α − β + 1) + k2(t)

V
(δ − γ + 2N − 1), k1(t) ≥ k2(t),

k1(t)

V
(α + β + 2γ − 1) + k2(t)

V
(δ − γ + 1), k1(t) ≤ k2(t).

Example 3. (The reaction A + B � 2C.) The continuous-time Markov chain which models
this reaction takes values in {0, 2, 4, . . . , M}, where M = 2β +γ and γ is assumed to be even.
Only transitions n → n±2 are possible; denoting the transition rates for forward and backward
jumps by λ̂n(t) and µ̂n(t) respectively, we set

λ̂n(t) = 1

4

k1(t)

V
(2α + γ − n)(2β + γ − n),

µ̂n(t) = 1

2

k2(t)

V
n(n − 1).

It is easily seen that the reaction may be described by the process 2X(t), where X(t) is a
birth–death process over {0, 1, . . . , M/2} with transition rates given by

λn(t) = 1

4

k1(t)

V
(2α + γ − 2n)(2β + γ − 2n),

µn(t) = k2(t)

V
n(2n − 1).

For X(t), we obtain that⎧⎪⎪⎨
⎪⎪⎩

k1(t)

V
(α − β + 1) + k2(t)

V
(2M − 3), k1(t) ≥ 2k2(t),

k1(t)

V
(α + β + γ − 1) + k2(t)

V
, k1(t) ≤ 2k2(t).

Example 4. (The reaction A � 2C.) The corresponding model is a continuous-time Markov
chain taking values in {0, 2, 4, . . . , M}, where M = 2α + γ (γ is even). The transition rates
(for jumps of size 2) are given by

λ̂n(t) = 1

2
k1(t)(2α + γ − n),

µ̂n(t) = 1

2

k2(t)

V
n(n − 1).

This reaction may be described by the process 2X(t), where X(t) is a birth–death process over
{0, 1, . . . , M/2} with transition rates given by

λn(t) = 1

2
k1(t)(2α + γ − 2n),

µn(t) = k2(t)

V
n(2n − 1).

For X(t), we obtain that

a(t) = k1(t) + k2(t)

V
.
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Remark 1. For the reactions in Examples 1–4, in a similar way to the above, we can obtain
convergence bounds in the cases where k1(t) ≡ 0 or k2(t) ≡ 0 (irreversible reactions).

Suppose now that X(t) is time-homogeneous, so that k1(t) ≡ k1, k2(t) ≡ k2, λn(t) ≡ λn,
µn(t) ≡ µn and a(t) ≡ a. The quantity a is a lower bound on the decay parameter of X(t);
the latter, as is well known, equals the spectral gap of the generator. If a > 0, then

b := max
0≤n<N

(λn + µn+1 − λn+1 − µn)

is an upper bound on the decay parameter [8]. It is interesting to note that in Example 2 we have
a = b if k1 = k2. Thus, in this case, Zeifman’s estimates give exactly the decay parameter;
the upper and lower bounds on the decay parameter are especially sharp if k1 is near k2. In
Example 3, we have a = b if k1 = 2k2.
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