
J. Appl. Prob. 40, 970–979 (2003)
Printed in Israel

 Applied Probability Trust 2003

STABILITY AND EXPONENTIAL CONVERGENCE
OF CONTINUOUS-TIME MARKOV CHAINS

A.Yu. MITROPHANOV,∗ Saratov State University

Abstract

For finite, homogeneous, continuous-time Markov chains having a unique stationary
distribution, we derive perturbation bounds which demonstrate the connection between
the sensitivity to perturbations and the rate of exponential convergence to stationarity.
Our perturbation bounds substantially improve upon the known results. We also
discuss convergence bounds for chains with diagonalizable generators and investigate
the relationship between the rate of convergence and the sensitivity of the eigenvalues of
the generator; special attention is given to reversible chains.

Keywords: Markov chain; exponential convergence; perturbation bounds; sensitivity
analysis; ergodicity coefficient; eigenvalue; spectral gap

AMS 2000 Subject Classification: Primary 60J27
Secondary 60J35; 60E15; 34D10; 15A42

1. Introduction

When using mathematical models to study real-world phenomena, it is often necessary to
predict the uncertainty in the model output given the uncertainty in the parameter values. The
purpose of this paper is to develop anewapproach to sensitivity analysis for finite, homogeneous,
continuous-time Markov chains. Such chains are widely used as a modeling tool; to give
some examples of modern applications, we mention biosensors [2], ion channels [3], cell
adhesion receptors [16]. In chemical kinetics, reversible chains are of special importance since
reversibility reflects the physical property of detailed balance [17].

Inequality-based perturbation theory for continuous-timeMarkov chains has been the subject
of several publications; see [1], [9], [18], [20], [21] (a perturbation theory for discrete-time
Markov chains with general state space can be found in [12], [13]). One of the most important
results was the discovery of a connection between the ‘mixing rate’of a chain and its sensitivity
to perturbations. We further explore this connection by deriving estimates of stability which
are much sharper than the ones obtained by other authors (see Section 2). Though we restrict
our attention to time-homogeneous Markov chains, our method of stability analysis can be
extended to nonhomogeneous processes. In Section 3 we consider convergence bounds for
chains with diagonalizable generators and show that the rate of convergence is closely related
to the sensitivity of the eigenvalues of the generator. We demonstrate that, for reversible chains,
the closeness of the generator to being symmetric controls the stability of its eigenvalues and
the rate of convergence of the chain to stationarity. Finally, in Section 4 we compare the
convergence bounds discussed in Sections 2 and 3.
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2. Perturbation bounds and exponential convergence

Consider two continuous-time Markov chains,X(t) and X̃(t), t ≥ 0, with finite state space
S = {0, 1, . . . , N}, N ≥ 1, and respective generatorsQ = (qij ) and Q̃ = (q̃ij ) (withQ �= Q̃).
Let p(t) = (pi(t)) and p̃(t) = (p̃i(t)) be the state probability vectors of X(t) and X̃(t). In
this section our main goal is to obtain estimates for the distance between p(t) and p̃(t) which
relate the stability of p(t) to the rate of its convergence as t → ∞. Throughout the paperX(t)
has a unique stationary distribution π = (πi).

We regard vectors as rowvectors, and‖·‖denotes the l1-norm (absolute entry sum) for vectors
and the corresponding subordinate norm (maximum absolute row sum) for matrices. Note that
for all probability vectors p and p̃, the quantity ‖p− p̃‖ is twice the variation distance between
the respective distributionsp(A) and p̃(A) (forA ⊆ S): ‖p−p̃‖ = 2maxA⊆S |p(A)−p̃(A)|.

For probability vectors p1 and p2, define p1(t) = p1P (t), p2(t) = p2P (t), where P (t) is
the transition probability matrix of X(t), P (t) = eQt .

Theorem 2.1. If b > 0 and c > 2 are constants such that, for all p1, p2,

‖p1(t)− p2(t)‖ ≤ ce−bt , t ≥ 0, (2.1)

then, for z(t) = p̃(t)− p(t) and E = Q̃ − Q,

‖z(t)‖ <




‖z(0)‖ + t‖E‖, 0 < t ≤ b−1 log
( c
2

)
,

ce−bt‖z(0)‖
2

+ b−1
(
log

( c
2

)
+ 1 − ce−bt

2

)
‖E‖, t ≥ b−1 log

( c
2

)
.

(2.2)

If π̃ is a stationary distribution of X̃(t), then

‖π̃ − π‖ < b−1
(
log

( c
2

)
+ 1

)
‖E‖. (2.3)

Proof. The vectors p̃(t) and p(t) satisfy the forward Kolmogorov equations

dp̃(t)

dt
= p̃(t)Q̃,

dp(t)

dt
= p(t)Q, t ≥ 0;

therefore, the vector z(t) is the solution to the initial-value problem

dz(t)

dt
= z(t)Q + p̃(t)E, z(0) = p̃(0)− p(0),

which implies that

z(t) = z(0)P (t)+
∫ t

0
p̃(t − u)EP (u) du,

‖z(t)‖ ≤ ‖z(0)P (t)‖ +
∫ t

0
‖p̃(t − u)EP (u)‖ du. (2.4)

Define
β(t) = sup

‖v‖=1
ve�=0

‖vP (t)‖ = 1
2 max
i,j∈S

‖(ei − ej )P (t)‖,
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where e is the row vector all of whose entries are 1, � denotes transpose and ei is the vector
whose ith entry equals 1 and all the other entries equal 0. The quantity β(t) is the l1 ergodicity
coefficient of P (t); see [15]. Since p̃(t)Ee� ≡ 0 (implied by Ee� = 0�) and

‖p̃(t − u)EP (u)‖ ≤ ‖E‖
∥∥∥∥ p̃(t − u)E
‖p̃(t − u)E‖P (u)

∥∥∥∥
(if p̃(t − u)E �= 0), we have ‖p̃(t − u)EP (u)‖ ≤ ‖E‖β(u). Similarly, ‖z(0)P (t)‖ ≤
‖z(0)‖β(t). This, together with (2.4), gives

‖z(t)‖ ≤ β(t)‖z(0)‖ + ‖E‖
∫ t

0
β(u) du. (2.5)

The inequality β(t) < 1 holds if and only if, for every two states i, j ∈ S, there exists a
state k such that pik(t) > 0 and pjk(t) > 0. This condition is satisfied for all t > 0 because
every state in the unique closed irreducible class of X(t) can be reached from every state in S
in any time t > 0. This implies that∫ t

0
β(u) du < t, t > 0. (2.6)

It follows from (2.1) that

β(t) ≤ ce−bt

2
, t ≥ 0. (2.7)

Using (2.6) and (2.7), we obtain that∫ t

0
β(u) du < b−1 log

( c
2

)
+

∫ t

b−1 log(c/2)

c

2
e−bu du

= b−1
(
log

( c
2

)
+ 1 − ce−bt

2

)
, b−1 log

( c
2

)
≤ t ≤ ∞. (2.8)

This, together with (2.5)–(2.7) and the fact that Q �= Q̃, gives (2.2).
Setting p̃(0) = π̃ and passing to the limit as t → ∞ in (2.5), we get

‖π̃ − π‖ ≤ ‖E‖
∫ ∞

0
β(u) du.

This inequality and (2.8) prove (2.3).

Corollary 2.1. In the setting of Theorem 2.1,

sup
t≥0

‖z(t)‖ <



b−1

(
log

( c
2

)
+ 1

)
‖E‖ if ‖E‖ ≥ b‖z(0)‖,

‖z(0)‖ + b−1 log
( c
2

)
‖E‖ otherwise.

(2.9)

Proof. Denote by f (t) the right-hand side of (2.2). Suppose that ‖E‖ ≥ b‖z(0)‖. If
supt≥0 ‖z(t)‖ = ‖z(t0)‖ for some t0 < ∞, then (2.9) follows from (2.2) and the fact that
f (t) is an increasing function. If supt≥0 ‖z(t)‖ = limt→∞ ‖z(t)‖, then (2.9) follows from
(2.3). Suppose now that ‖E‖ < b‖z(0)‖. In this case, f (t) is a strictly decreasing function for
t > b−1 log(c/2). This fact, together with (2.2), gives (2.9).
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Remark 2.1. If (2.1) holds with some b, c > 0, then c ≥ 2. In the case when c = 2
we can obtain results similar to Theorem 2.1 and Corollary 2.1; the analogues of (2.2) for
t ≥ b−1 log(c/2), and of (2.3) and (2.9) have the same form, but the inequalities are not strict.

Remark 2.2. If a, d are positive constants such that, for all p(0),

‖p(t)− π‖ ≤ de−at , t ≥ 0, (2.10)

then we have (2.1) with c = 2d and b = a. The convergence bound (2.10) holds for arbitrary
p(0) if it holds for p(0) = ei for each i ∈ S; similarly, (2.1) holds for arbitrary p1 and p2 if it
holds for p1 = ei and p2 = ej for each i, j ∈ S.

We now compare our perturbation bounds with the ones derived in [9] and [21]. These
papers deal with the case z(0) = 0. Let C and α be positive constants such that

‖p2(t)− p1(t)‖ ≤ Ce−αt‖p2 − p1‖, t ≥ 0, (2.11)

for all p1, p2. Following the proof of Theorem 2.1 of [21], we arrive at

sup
t≥0

‖z(t)‖ ≤ 12Cα−1‖E‖. (2.12)

Our result for this situation is much sharper: if (2.11) holds, then Corollary 2.1, Remark 2.1
and the inequality ‖p2 − p1‖ ≤ 2 give

sup
t≥0

‖z(t)‖ ≤ α−1(log(C)+ 1)‖E‖. (2.13)

Suppose that X(t) is a birth–death process with birth rates {bi, i ∈ S} and death rates
{di, i ∈ S}, all positive except bN = d0 = 0. Let g0, g1, . . . , gN−1 be positive numbers;
set g−1 = g0 = 1, gN = 0. Consider

G =




g0 g0 g0 · · · g0
0 g1 g1 · · · g1
0 0 g2 · · · g2
...

...
. . .

. . .
...

0 0 · · · 0 gN−1


 ,

G−1 =




g−1
0 −g−1

1 0 · · · 0

0 g−1
1 −g−1

2
. . .

...

0 0 g−1
2

. . . 0
...

...
. . .

. . . −g−1
N−1

0 0 · · · 0 g−1
N−1



,

αk = bk + dk+1 − gk+1g
−1
k bk+1 − gk−1g

−1
k dk, k = 0, 1, . . . , N − 1, (2.14)

and assume that the gk are such that α := min0≤k≤N−1 αk > 0. Following the proofs of
Theorems 6 and 8 of [9], we obtain that

‖p2(t)− p1(t)‖ ≤ 2κ∞(G)e−αt‖p2 − p1‖, t ≥ 0, (2.15)

sup
t≥0

‖z(t)‖ ≤ 6α−1κ∞(G)‖E‖,
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where κ∞(G) = ‖G‖∞‖G−1‖∞ (the ∞-norm condition number of G) and ‖ · ‖∞ denotes the
maximum absolute column sum of a matrix. Note that the above perturbation bound is tighter
than the combination of (2.12) and (2.15). The inequalities (2.13) and (2.15) imply that

sup
t≥0

‖z(t)‖ ≤ α−1(log(2κ∞(G))+ 1)‖E‖.

Our approach can also be compared with that of [1] and [20] in a similar manner.
Finally, we highlight the main features of the presented method, which produces improved

perturbation bounds:

(a) in [1], [9], [18], [20] and [21], the authors study the so-called reduced systems of forward
Kolmogorov equations, whereaswe analyze the systemsofKolmogorov equations in their
unmodified form;

(b) we use the inequality β(t) < 1 to prove (2.8).

It should also be noted that, since the notion of exponential convergence can be generalized in
a natural way to nonhomogeneous Markov chains [21], it is possible to extend the sensitivity
bounds in Theorem 2.1 and Corollary 2.1 to chains with time-dependent generators (explicit
convergence bounds for nonhomogeneous birth–death processes are given in [9] and [19]).

3. Convergence bounds for Markov chains with diagonalizable generators

In this section we assume that Q is diagonalizable. The generator Q enjoys this property if
all its eigenvalues are distinct; another sufficient condition is reversibility of X(t). We discuss
bounds on the rate of convergence to stationarity which, in conjunction with Theorem 2.1, yield
perturbation bounds for the distribution of X(t).

Since Q is the generator of a Markov chain, 0 is one of its eigenvalues; real parts of all
nonzero eigenvalues are negative. The uniqueness of the stationary distribution, π , implies
that the multiplicity of the zero eigenvalue of Q is 1. Denote by λj for j = 0, 1, . . . ,M ,
the distinct values of the eigenvalues of Q; their respective multiplicities are denoted by mj ,∑M
j=0mj = N + 1. Choose λ0 = 0. Put λ = min1≤j≤M |Re λj |; this quantity is the spectral

gap of Q.
Let X be a nonsingular matrix such that Q = X−1�X, where � is diagonal. It is clear that

the rows of X, denoted by xi , are left eigenvectors of Q, and � consists of the eigenvalues of
Q. For each λj , define Lj = {k ∈ S : xkQ = λjQ}. Set κ(X) = ‖X‖‖X−1‖.
Theorem 3.1. For all p(0),

‖p(t)− π‖ ≤ Ke−λt , t ≥ 0, (3.1)

where

K = max
i∈S

M∑
j=1

∥∥∥∥ ∑
k∈Lj

x
(−1)
ik xk

∥∥∥∥ = max
i∈S

M∑
j=1

∥∥∥∥ei (Q/λj )
∏
k �=0,j

I − Q/λk

1 − λj/λk
∥∥∥∥,

the x(−1)
ik are the entries of X−1 and I denotes the identity matrix. Also,

K ≤ κ(X)− 1,

and equality is attained if all eigenvalues of Q are distinct and ‖xi‖ = 1 for all i ∈ S.
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Proof. We have p(t) = p(0)P (t), P (t) = X−1e�tX and

p(t) = x(−1)
i0 x0 +

M∑
j=1

( ∑
k∈Lj

x
(−1)
ik xk

)
eλj t , p(0) = ei . (3.2)

If p(0) = ei , then the following expression holds [14]:

p(t) = ei

M∏
j=1

(I − Q/λj )+
M∑
j=1

ei (Q/λj )
∏
k �=0,j

I − Q/λk

1 − λj/λk e
λj t .

Since the real parts of λj for j �= 0 are negative, x(−1)
i0 x0 = ei

∏M
j=1(I − Q/λj ) = π for all

i ∈ S. The functions eλ1t , . . . , eλMt are linearly independent, and, therefore,

∑
k∈Lj

x
(−1)
ik xk = ei (Q/λj )

∏
k �=0,j

I − Q/λk

1 − λj/λk , j = 1, . . . ,M. (3.3)

The expression (3.2) implies that

max
i∈S

‖eiP (t)− π‖ ≤ e−λt max
i∈S

M∑
j=1

∥∥∥∥ ∑
k∈Lj

x
(−1)
ik xk

∥∥∥∥.
This, together with (3.3), gives (3.1).

Since ‖x(−1)
i0 x0‖ = |x(−1)

i0 |‖x0‖ = 1, we obtain that

K ≤ max
i∈S

N∑
j=1

|x(−1)
ij |‖xj‖ = max

i∈S

N∑
j=0

|x(−1)
ij |‖xj‖ − 1

≤
(
max
j∈S

‖xj‖
)(

max
i∈S

N∑
j=0

|x(−1)
ij |

)
− 1.

If all eigenvalues of Q are distinct and ‖xi‖ = 1 for all i ∈ S, then

K = max
i∈S

N∑
j=1

|x(−1)
ij |‖xj‖ = max

i∈S

N∑
j=0

|x(−1)
ij | − 1 = ‖X−1‖ − 1.

Remark 3.1. It follows from Theorem 3.1 that in the case of distinct eigenvalues the scaling
‖xi‖ = 1 for all i ∈ S minimizes κ(X). The same is true for the general case of diagonalizable
Q; this can be proved using the expression X−1 = adj(X)/ det(X), where adj(X) and det(X)
are, respectively, the adjugate and determinant of X.

The connection between κ(X) and the sensitivity of the eigenvalues of Q to perturbations
is well known. If µ is an eigenvalue of Q̃, then the following inequality holds [11]:

min
0≤j≤M |λj − µ| ≤ κ(X)‖E‖. (3.4)

The next two propositions give further results for Markov chains.



976 A.Yu. MITROPHANOV

Proposition 3.1. Suppose that

κ(X)‖E‖ < 1
2 min
j∈A,k∈B

|λj − λk|, (3.5)

where A = {j : 0 ≤ j ≤ M, |Re λj | �= λ} and B = {j : 1 ≤ j ≤ M, |Re λj | = λ}. If λ̃
denotes the spectral gap of Q̃, then

|λ̃− λ| ≤ κ(X)‖E‖.
Proof. The inequality (3.4) implies that the eigenvalues of Q̃ lie in the discs

{z ∈ C : |z− λj | ≤ κ(X)‖E‖}, 0 ≤ j ≤ M. (3.6)

If (3.5) holds, then the set

M =
⋃
j∈B

{z ∈ C : |z− λj | ≤ κ(X)‖E‖}

does not intersect the discs (3.6) for j ∈ A. It can be proved that in this case M contains∑
j∈B mj eigenvalues of Q̃; see the proof of Theorem 6.1.1 of [11] (the Geršgorin theorem).

Similarly, (3.5) implies that the disc {z ∈ C : |z| ≤ κ(X)‖E‖} is isolated from the discs (3.6)
for nonzero eigenvalues of Q and hence contains only one eigenvalue of Q̃. Obviously, it is
the zero eigenvalue. Thus, if µ is an eigenvalue of Q̃ such that |Reµ| = λ̃, then either µ ∈ M
or

µ ∈
⋃
j∈A

{z ∈ C : |z− λj | ≤ κ(X)‖E‖} and |λ̃− λ| ≤ κ(X)‖E‖.

Proposition 3.2. If κ(X)‖E‖ < 1
2 min1≤j≤M |λj |, then the chain X̃(t) has a unique stationary

distribution.

Proof. It follows that the disc {z ∈ C : |z| ≤ κ(X)‖E‖} is isolated from analogous discs
for nonzero eigenvalues of Q. Therefore, the multiplicity of the zero eigenvalue of Q̃ is 1,
which implies uniqueness of the stationary distribution of X̃(t).

Suppose now that X(t) is reversible, i.e. it is irreducible and the condition

πiqij = πjqji (3.7)

is satisfied for all i, j ∈ S. In this case, the following bound holds for all p(0) (see [6]):

‖p(t)− π‖ ≤ e−λt
√
max
i∈S

1

πi
− 1. (3.8)

Theorem 3.1 and (3.4) show that, for chains with diagonalizable generators, the rate of con-
vergence to stationarity and the sensitivity of the eigenvalues of Q are both controlled by the
quantity κ(X). Belowwe demonstrate that, in the case of reversible chains, these two properties
depend on the spread of the stationary probabilities, which in turn depends on how close Q is
to being symmetric.

For a square real matrix A, define the spectral norm by ‖A‖2 = maxi
√
νi , where the νi are

the eigenvalues of A�A.
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Theorem 3.2. If X(t) is reversible and µ is an eigenvalue of Q̃, then

min
0≤j≤M |λj − µ| ≤

√
max
i,j∈S

πi

πj
‖E‖2 ≤

√
(N + 1)max

i,j∈S

πi

πj
‖E‖. (3.9)

Proof. Define D = diag(π0, . . . , πN). We then have D1/2 = diag(
√
π0, . . . ,

√
πN)

and D−1/2 = diag(
√
1/π0, . . . ,

√
1/πN). The relations (3.7) imply that the matrix T =

D1/2QD−1/2 is symmetric, and, therefore, there exists a real orthonormal matrix U such that
UT U−1 is diagonal (note that U−1 is also orthonormal). Thus, the rows of UD1/2 are left
eigenvectors of Q. The spectral norm is unitarily invariant, and, therefore, ‖V AV̂ ‖2 = ‖A‖2
for every square real A and for all real orthonormal V , V̂ [11]. Using the analogue of (3.4) for
the spectral norm, we obtain that

min
0≤j≤M |λj − µ| ≤ ‖UD1/2I‖2 ‖ID−1/2U−1‖2 ‖E‖2 =

√
max
i,j∈S

πi

πj
‖E‖2.

The theorem follows from this bound and the inequality ‖ · ‖2 ≤ √
n‖ · ‖, which holds for all

real n× n matrices.

Remark 3.2. Statements similar to Propositions 3.1 and 3.2 can be proved using (3.9).

The square-root factor in (3.8) is related to the spread of the stationary probabilities:

max
i,j∈S

πi

πj
< max

i∈S

1

πi
≤ (N + 1)max

i,j∈S

πi

πj
, (3.10)

which follows from the inequality maxi∈S πi ≥ 1/(N + 1). If Q is symmetric, then the
conditions (3.7) imply that πi = 1/(N + 1) for all i ∈ S; in this case, equality is attained in
the second inequality in (3.10). Let & be a nondirected graph with vertex set S and edge set
E such that, for all i, j ∈ S with i �= j , (i, j) ∈ E if and only if qij > 0. For distinct states
i, j ∈ S, let i, v1, v2, . . . , vd, j be a path from i to j in &. The relations (3.7) imply that

max
qij>0

qij

qji
≤ max
i,j∈S

πi

πj
= max
i,j∈S
i �=j

qv1iqv2v1 · · · qvdvd−1qjvd

qiv1qv1v2 · · · qvd−1vd qvdj
. (3.11)

In the inequality in (3.11), equality is attained if and only if maxi,j∈S πi/πj = πi0/πj0 and
qi0j0 > 0 for some i0, j0 ∈ S.

If Q is almost symmetric, then the right-hand side of (3.11) is near 1 and we can expect
relatively low sensitivity of the eigenvalues to perturbations, as well as a not very large square-
root factor (compared to

√
N ) in the convergence bound (3.8). If Q is far from symmetric,

then the left-hand side of (3.11) and the spread of the πi will be large, forcing the square-root
factors in (3.8) and (3.9) to be large.

4. Comparing the convergence bounds

The bounds (3.1) and (3.8) belong to the family of eigenvalue convergence bounds [6], [7].
To prove the inequality (2.15), we need to consider the reduced system of forward Kolmogorov
equations and make use of the notion of logarithmic norm; see [9], [19]. The derivation of
(3.1) involves a similarity transformation; the same is true for (2.15) and (3.8). In the case of
(2.15), it is the transformation B �→ GBG−1, where B is the reduced transposed generator
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of the chain X(t). This transformation does not diagonalize B. For (3.8), the transformation
is the same as in the proof of Theorem 3.2, with UD1/2 being the transformation matrix. The
inequalities (3.10) relate the square-root factor in (3.8) to the spectral-norm condition number
of UD1/2. Thus, in all of the considered convergence bounds, the rate of convergence can be
estimated in terms of condition numbers of the transformation matrices.

It can be proved that a set of gk needed for (2.15) always exists, but determining such a
set may require guessing. The quantity α is a lower bound on the spectral gap, λ, and there
exists a set of gk such that α = λ; this set can be found by solving a system of nonlinear
algebraic equations [8], [10]. The idea behind (2.15) can be extended to general continuous-
time Markov chains, but the question of finding the corresponding transformation matrix has
not been addressed [1].

The use of eigenvalue bounds on the rate of convergence to stationarity is somewhat more
straightforward, and they are widely applicable (note that (3.8) can be generalized to nonre-
versible chains [7]). Eigenvalue convergence bounds can be used in combination with estimates
for the spectral gap such as the Poincaré and the Cheeger bounds; see [6] and [7] for an
introduction to these techniques. There also exist related approaches to estimating the rate of
convergence that make use of logarithmic Sobolev inequalities [4] and Nash inequalities [5].

A natural question that can be asked about the convergence bounds discussed above is: which
bound is the most accurate? Here we show that there is no universal answer to this question.

Let X(t) be a birth–death process with birth rates bi = k+(N − i) and death rates di = k−i
for i ∈ S, where k+, k− > 0. This is a special case of the Prendiville process [22]. The
Prendiville process is widely used as a stochastic model in various fields of science. As an
example, consider the chemical reactionA+B � AB. Suppose that the reaction cell contains
so many molecules of species A that the changes in the concentration of A in the course of the
reaction can be neglected. If N is the number of molecules of B in the cell, then the number of
complexes AB may be described by the Prendiville process (see e.g. [2]).

If N = 1, we can analyze the stability of the Prendiville process via (2.5); in this case,
β(t) = e−(k++k−)t . The cases when N > 1 require estimation of β(t). Since X(t) is a birth–
death process, it is reversible and the eigenvalues of Q are distinct, which means that all of the
convergence bounds of Sections 2 and 3 are applicable. We numerically compare three bounds
of the form (2.1):

‖p1(t)− p2(t)‖ ≤ Cne−rnt , t ≥ 0, n = 1, 2, 3,

where

C1 = 4κ∞(G), r1 = α,
C2 = 2(‖X−1‖ − 1) (‖xi‖ = 1, i ∈ S), r2 = λ;

C3 = 2

√
max
i∈S

1

πi
− 1, r3 = λ;

see (2.15), (3.1) and (3.8). In (2.14), we choose gk = 1 for k = 1, . . . , N − 1; this gives
α = k+ + k−. It follows from Theorem 3 of [8] that k+ + k− = λ; since, for our choice
of the gk , ‖G‖∞ = N and ‖G−1‖∞ = 2, we put C1 = 8N and r1 = λ. Thus, all we
need to do is to compare the Cn. The parameter values for the numerical experiments and the
corresponding values of the Cn are given in Table 1. Numerical experiments show that, for
any permutation, σ , of the numbers 1, 2, 3, there exists a set of the parameter values such that
Cσ(1) < Cσ(2) < Cσ(3).
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Table 1: Numerical experiments.

N k+ k− C1 C2 C3

2 13 2 16 12.018 14.866
2 15 2 16 12.457 16.882
3 4 2 24 13.630 10.198
5 4 2 40 50.568 31.113
6 4 2 48 91.128 53.963
4 10 2 32 67.901 71.972
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