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Abstract

The CovR/S system in Streptococcus pyogenes (Group A Streptococcus, or GAS), a two-component signal transduction/transcription

regulation system, controls the expression of major virulence factors. The presence of a negative feedback loop distinguishes the CovR/S

system from the majority of bacterial two-component systems. We developed a deterministic model of the CovR/S system consisting of

eight delay differential equations. Computational experiments showed that the system possessed a unique stable steady state. The

dynamical behavior of the system showed a tendency for oscillations becoming more pronounced for longer but still biochemically

realistic delays resulting from reductions in the rates of translation elongation. We have devised an efficient procedure for computing the

system’s steady state. Further, we have shown that the signal–response curves are hyperbolic for the default parameter values. However,

in experiments with randomized parameters we demonstrated that sigmoidality of signal–response curves, implying a response threshold,

is not only possible, but seems to be rather typical for CovR/S-like systems even when binding of the CovR response regulator protein to

a promoter is non-cooperative. We used sensitivity analysis to simplify the model in order to make it analytically tractable. The existence

and uniqueness of the steady state and hyperbolicity of signal–response curves for the majority of the variables was proved for the

simplified model. Also, we found that provided CovS was active, the system was insensitive to changes in the concentration of any other

phosphoryl donor such as acetyl phosphate.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For a bacterium to adapt and survive it must acquire and
process information flows coming from the surrounding
environment. These flows consist of series of signals
produced by changes in pH, light intensity, osmolarity,
concentration of small molecules, etc. Bacteria have
evolved molecular systems specialized for transmitting
these signals into the cell and triggering a response by
causing changes in the expression levels of target genes.
e front matter r 2006 Elsevier Ltd. All rights reserved.

i.2006.11.009

ing author. School of Biology, Georgia Institute of

lanta, GA 30332-0230, USA. Tel.: +1 404 894 8432;

0519.

ess: mark.borodovsky@biology.gatech.edu

y).
A large class of signal transduction systems, called two-
component systems (reviewed in Stock et al., 2000; West
and Stock, 2001; Kenney, 2002; Harshey et al., 2003),
include two major players—a sensor kinase and a response
regulator. When the signal is received, the sensor kinase
phosphorylates the response regulator, thus modulating
the DNA-binding properties of the latter, and determines
which genes will be affected by the external signal. Besides
prokaryotes, this two-component mechanism of signal
transduction has been found in archaea, plants, fungi,
and protozoans (Koretke et al., 2000).
Two-component systems play a variety of roles in

bacterial cells. Streptococcus pyogenes (Group A Strepto-
coccus, or GAS) is an important human pathogen that
causes diseases ranging from superficial infections such as
pharyngitis and pyoderma to life-threatening invasive
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diseases such as toxic shock syndrome and necrotizing
fasciitis (Cunningham, 2000). The CovR/S (also termed
CsrR/S) system determines the response of GAS to stresses
such as increased temperature, salt concentration, and
decreased pH (Dalton and Scott, 2004). It regulates the
expression of �15% of GAS genes (Graham et al., 2002).
The CovR/S system controls directly the expression of
major virulence factors (Bernish and Rijn, 1999; Miller
et al., 2001; Federle and Scott, 2002; Gao et al., 2005; Gusa
and Scott, 2005; Sumby et al., 2006) and is an important
factor in the transition from colonization to invasion. The
CovR/S system, whose major components are the sensor
kinase CovS and the response regulator CovR, has several
important features. First, it represents regulatory systems
ubiquitous in prokaryotes (Parkinson, 1993; Stock et al.,
2000), including all major bacterial human pathogens.
Second, unlike most other two-component regulatory
systems (such as e.g. PhoP/Q and PmrA/B (Groisman,
2001), KdpD/E (Kremling et al., 2004), and NtrB/C
(Cullen et al., 1996)), the response regulator (CovR) acts
primarily to repress rather than activate gene expression
(Graham et al., 2002). Third, the system contains a
negative feedback loop (Gusa and Scott, 2005). Fourth,
the available genetic evidence suggests that the cov regulon
can respond to internal metabolic signals as well as external
environmental signals (Heath et al., 1999; Graham et al.,
2002; Dalton and Scott, 2004). Therefore the CovR/S
system is an important target for computational analysis of
the quantitative behavior of bacterial transcription control
systems, for both practical and theoretical reasons.

Currently, quantitative modeling of transcription control
systems is a well-established field (Smolen et al., 2000;
Hasty et al., 2001; de Jong, 2002). Early attempts to
describe gene regulation focused on the mathematical
properties of simplified models, utilizing the formalism of
ordinary differential equations (ODEs) (Goodwin, 1965;
Griffith, 1968a, b). Later, it was recognized that the non-
zero durations of transcription, translation, and diffusion
should be taken into account (Banks and Mahaffy, 1978;
Tyson and Othmer, 1978; Bliss et al., 1982), leading to the
development of models using delay differential equations
(DDEs) and the study of properties of these models such as
the stability of the steady state, the possibility of
oscillations, and the existence of multiple steady states
(Banks and Mahaffy, 1978; Tyson and Othmer, 1978; Bliss
et al., 1982; Smith, 1987).

The ODE/DDE approach has been applied to model the
behavior of real systems such as the growth of the phage T7
in E. coli (Endy et al., 1997), the expression of the
tryptophan operon in E. coli (Santillan and Mackey, 2001),
and the E. coli lactose operon (Yildirim and Mackey, 2003;
Mackey et al., 2004; Yildirim et al., 2004) with excellent
agreement between the models’ predictions and experi-
mental observations.

Results on quantitative modeling of signal transduction
have been reviewed by Ashtagiri and Lauffenburger (2000).
As with gene regulation modeling, one segment of the
existing literature concentrates on theoretical properties of
signal transduction models, such as the possibility of
oscillatory behavior (Kholodenko, 2000; Saez-Rodriguez
et al., 2004), bistability (Ferrell and Xiong, 2001),
modularity (Saez-Rodriguez et al., 2004), and signal
amplification (Kholodenko et al., 1997; Heinrich et al.,
2002), while the other segment is devoted to bridging the
gap between theory and experiment. A considerable body
of the literature is focused on signal transduction systems
in eukaryotic cells, such as the cascades of MAPK kinases
(Huang and Ferrell, 1996; Bhalla and Iyengar, 1999;
Kholodenko, 2000; Asthagiri and Lauffenburger, 2001;
Schoeberl et al., 2002; Saez-Rodriguez et al., 2004). The
corresponding models are ODE systems describing mass
action (or Michaelis–Menten) kinetics, and model predic-
tions compare favorably with experiment (Schoeberl et al.,
2002). In prokaryotes, researchers’ attention has mostly
focused on two-component signal transduction systems per

se, without taking into account the associated transcription
regulation modules (Alves and Savageau, 2003; Batchelor
and Goulian, 2003; Rao et al., 2004, 2005). Two papers
which explicitly accounted for both signal transduction and
transcription regulation described an ODE model of the
KdpD/E system in E. coli (Kremling et al., 2004; Saez-
Rodriguez et al., 2005). The model showed a good fit to the
experimental data in vivo and in vitro (Kremling et al.,
2004). However, the KdpD/E system involves a positive
feedback loop rather than a negative feedback loop, such
as the one possessed by the CovR/S system. Further, for
transcription regulation systems, DDEs have been shown
to be more suitable models than ODEs (Banks and
Mahaffy, 1978; Bliss et al., 1982; Yildirim and Mackey,
2003). Finally, the standard way to represent the interac-
tions of regulatory proteins with DNA in gene expression
control system has been through the use of Hill-like curves,
following the early developments of Yagil and Yagil
(1971). However, Hill curves have been criticized for their
empirical nature (Hill, 1985). It is therefore necessary to
devise more advanced models for describing the interac-
tions between regulators and DNA in transcription control
systems.
In this paper, we develop a DDE model for the CovR/S

system in GAS, drawing upon the available knowledge
about the system and the existing methodology for
modeling transcription regulation systems. While the
model focuses on the key components of the CovR/S
system, it can be readily extended to include other
components, and even modified to describe systems with
positive feedback loops. In the model, we assume that
CovR-binding sites are independent, but a more general
binding mechanism can be easily incorporated into the
model framework. (See Supplementary material for a
quantitative description of repression of transcription in
the case of general binding mechanism, with or without
cooperativity—Appendix B.) Our primary goal was to
investigate the transient and steady-state behavior, con-
centrating on the properties related to the signal transduc-
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Table 2

Transcriptional and translational delays

covR transcription time (transcriptional delay for

CovS mRNA)

0.005 (h)

CovR translation time 0.004

CovS translation time 0.009

Has translation time 0.008

CovS

CovS-P ADP

ATP

Signal k1
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tion function. We utilize an existing algorithm to model the
transient dynamics, and devise an effective procedure to
determine steady-state concentrations of the model com-
ponents. This procedure is instrumental for our computa-
tional investigation of hyperbolicity and sigmoidality of the
steady-state signal–response curves. Using sensitivity ana-
lysis techniques, we were able to derive a simplified model
which permits analytical investigation. For this reduced
model, we rigorously prove the existence and uniqueness of
the steady state, and some general characteristics of the
signal–response curves. The approach that we develop
elucidates the universal properties of two-component
systems with a negative feedback loop, and is suitable for
analysis of other types of prokaryotic signal transduction
systems.
CovR-PCovR

Binding region covR covS

Transcription

Translation

CovR

Translation

CovS

Binding region has

Transcription

Translation

Has

––

Negative 
feedback 
loop

Fig. 1. A schematic of the CovR/S signal transduction system. The blue

circle indicates the negative feedback loop associated with CovR.
2. Model description

We delineate the deterministic model of the CovR/S
system, which describes the behavior of the system
averaged over a population of cells (so that the stochastic
effects resulting from small numbers of participating
molecules can be neglected). We have also developed a
general model describing gene repression with arbitrary
degree of cooperativity in binding of the repressor to DNA.
For the parameters of the model, we chose a set of
biologically justifiable values (Tables 1 and 2), utilizing
experimental data obtained for the CovR/S system, and
data from the literature.

A schematic of the CovR/S system, featuring the key
components reflected in our model, is shown in Fig. 1. The
key signal transduction reactions in which CovR and CovS
participate are as follows:
(I)
Tabl

Para

k1
k�1
k2
k�2
k3
k4
k5
k6
k7
k8
k9
M6
CovS+ATP  !
k1=k�1

CovS-P+ADP (autophosphoryla-
tion),

k =k

(II)
 CovR+CovS-P  !

2 �2

CovS+CovR-P (phosphotrans-
fer).
Here, CovR-P and CovS-P are the phosphorylated forms
of CovR and CovS, P is the phosphoryl group, and ki,
i ¼ 1, �1, 2, �2, are the reaction rates. The autopho-
e 1

meter values for the model equations

0.6 (h mM)�1 k10 500 h�1

2e�7 (h mM)�1 k11 300 h�1

600 (h mM)�1 k12 50 mMh�1

24e�9 (h mM)�1 k13 20 h�1

0.04 (h mM)�1 k14 550 h�1

1500 h�1 k15 250 h�1

300 h�1 K6 0.4 (mM)�1

60 mMh�1 K12 0.8 (mM)�1

8 h�1 ATP 2000mM
400h�1 ADP 250mM
200h�1 XP 50 mM
5 m12 5
sphorylation in Reaction 1 is signal dependent: the rate of
the forward reaction is linked to the intensity of the
incoming signal. As it has been shown that CovS-P is not
necessary for the phosphorylation of CovR in vivo (Dalton
and Scott, 2004), we assume the existence of a phosphate
donor X-P, which transfers the phosphoryl group to CovR
in the reaction
(III)
 CovR+X-P �!
k3

CovR-P+X.
We also assume that CovR-P and CovS-P can be depho-
sphorylated via hydrolysis as follows:
(IV)
 CovR-P �!
k4

CovR+P.

(V)
 CovS-P �!

k5
CovS+P.
Reactions 4 and 5 are pseudo-first-order reactions. The
remaining reactions represented in the model are as
follows: (VI) synthesis of CovR and CovS mRNA; (VII)
decay of CovR and CovS mRNA; (VIII) synthesis of
CovR; (IX) decay of CovR; (X) synthesis of CovS; (XI)
decay of CovS. Since the CovS and CovR come from the
same initial transcript (Gusa and Scott, 2005), the
corresponding rate and equilibrium constants are the same.
However, we distinguish between the CovR and CovS
mRNA, because the expressions for the rate of their
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Table 3

Reactants and the corresponding concentration variables

CovS CovS-P CovR CovR-P CovR CovS Has Has

mRNA mRNA mRNA

X1 X2 X3 X4 X5 X6 X7 X8
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synthesis include different delays (zero delay for CovR
mRNA, and non-zero delay for CovS mRNA). The decay
reactions are first-order reactions. The protein synthesis
reactions are pseudo-first-order reactions with rates
proportional to the concentration of the corresponding
mRNA. In this study we include in the system just one
target gene and the corresponding protein. We chose Has,
representing the proteins involved in GAS hyaluronic acid
capsule synthesis. (The has operon contains three genes,
hasA, hasB, and hasC. Our ‘‘Has’’ notation stands for
HasA.) We thus need to include four more reactions: (XII)
synthesis of Has mRNA; (XIII) decay of Has mRNA;
(XIV) synthesis of Has; (XV) decay of Has. The rate
constants for Reactions (VI–XV) are denoted by ki, where i

is the reaction number as given above.
The available evidence suggests that CovR must be

phosphorylated to regulate gene expression in vivo (Dalton
and Scott, 2004). For the rates of the mRNA synthesis
reactions we used expressions of the following form:

Rate ¼ ki=ð1þ Ki½CovR�P�Þ
5,

where ki, i ¼ 6,12, is the synthesis rate in the absence of
repression, and Ki is the equilibrium binding constant for
CovR-P and a binding site of the corresponding gene (see
Supplementary material for derivations, Appendix B). The
exponent in the denominator reflects the multiplicity of
the independent transcription factor binding sites for a
given gene. The has promoter is known to contain five
independent sites for binding CovR-P (Federle and Scott,
2002); we assumed the same regulation scheme for covRS.

With the reactant concentrations denoted by X1,y,X8

(see Table 3), the reactions described above give rise to the
system of DDEs:

dX 1=dt ¼ k�1½ADP�X 2 þ k2X 2X 3 þ k5X 2 þ k10X
ðd6Þ

6

� k1½ATP�X 1 � k�2X 1X 4 � k11X 1, ð1Þ

dX 2=dt ¼ k1½ATP�X 1 þ k�2X 1X 4 � k�1½ADP�X 2

� k2X 2X 3 � k5X 2, ð2Þ

dX 3=dt ¼ k�2X 1X 4 þ k4X 4 þ k8X
ðd5Þ

5 � k2X 2X 3

� k3½X�P�X 3 � k9X 3, ð3Þ

dX 4=dt ¼ k2X 2X 3 � k�2X 1X 4 þ k3½X�P�X 3 � k4X 4, (4)

dX 5=dt ¼ k6=ð1þ K6X 4Þ
5
� k7X 5, (5)

dX 6=dt ¼ k6=ð1þ K6X
ðd4Þ

4 Þ
5
� k7X 6, (6)
dX 7=dt ¼ k12=ð1þ K12X 4Þ
5
� k13X 7, (7)

dX 8=dt ¼ k14X
ðd7Þ

7 � k15X 8. (8)

In this model, the concentrations [ATP], [ADP], and [X-P]
are assumed to be constant. While all the reactions are
catalyzed by enzymes, and certain intermediate complexes
are formed, in order to keep the system tractable, we omit
the intermediate stages and reactants that should not make
a significant impact on the system.
In Eqs. (1)–(8), the superscript di, i ¼ 4, y, 7, denotes

that the corresponding system variable has a delayed
argument. For example, the rate of CovR synthesis in
Eq. (3) has the form k8X5(t�t), where t is the average time
of the CovR mRNA translation. All the terms describing
mRNA translation have delays which reflect the transla-
tion times for the corresponding proteins. As for transcrip-
tion, only the term for CovS mRNA synthesis (Eq. (6)) has
a delayed argument, since the covS gene is located
downstream of covR, and transcription of the former
cannot start until the latter is transcribed. Here, the delay
equals the transcription time for the CovR mRNA. The
rates of CovR mRNA and Has mRNA synthesis enter
Eqs. (5) and (7) with zero delays, since the corresponding
genes are the most upstream genes in their operons, and the
mRNA translation starts almost immediately after tran-
scription initiation.

3. Methods

All computations and visualization were performed in
MATLAB R2006a.

3.1. The steady-state equations and their solution

The steady-state equations have the form (we rearranged
some terms in the equations):

k�1½ADP�X 2 þ k2X 2X 3 þ k5X 2 þ k10X 5 ¼ k1½ATP�X 1

þ k�2X 1X 4 þ k11X 1, ð9Þ

k�1½ADP�X 2 þ k2X 2X 3 þ k5X 2 ¼ k1½ATP�X 1 þ k�2X 1X 4,

(10)

k2X 2X 3 þ k3½X�P�X 3 þ k9X 3 ¼ k�2X 1X 4 þ k4X 4 þ k8X 5,

(11)

k2X 2X 3 þ k3½X�P�X 3 ¼ k�2X 1X 4 þ k4X 4, (12)

k6=ð1þ K6X 4Þ
5
¼ k7X 5, (13)
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k12=ð1þ K12X 4Þ
5
¼ k13X 7, (14)

k14X 7 ¼ k15X 8. (15)

We did not include the steady-state version of Eq. (6) since
it is similar to Eq. (13), and used the steady-state equality
X5 ¼ X6. Thus, we exclude X6 from our steady-state
analyses. Subtracting Eq. (10) from Eq. (9), we get

k10X 5 ¼ k11X 1. (16)

Subtracting Eq. (12) from Eq. (11), we obtain

k8X 5 ¼ k9X 3. (17)

Eq. (13) yields the expression for X4 in terms of X5:

X 4 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k6

k7X 5

5

s
� 1

 !
=K6. (18)

Note that, for Eq. (18) to be valid, we should have

X 5o
k6

k7
. (19)

Using Eqs. (14) and (15) in combination with Eq. (19), we
can obtain expressions for X7 and X8 in terms of X5. From
Eq. (10), we get

X 2 ¼
k1½ATP�X 1 þ k�2X 1X 4

k�1½ADP� þ k2X 3 þ k5
. (20)

Combining Eqs. (16)–(18) and (20), we can express X2 in
terms of X5. If we plug the expressions for X1, y, X4 in
terms of X5 into Eq. (12), we obtain an algebraic equation
for X5, which is to be solved on interval (0, k6/k7). The
number of solutions of this equation determines the
number of solutions of system (9)–(15), because all
the other variables are uniquely expressed in terms of X5.
We are only interested in non-negative solutions of system
(9)–(15), since only non-negative values for the concentra-
tions are biologically relevant. It is easy to see that, if X5 is
positive, then all other concentrations are positive.

Due to the complex structure of the model, theoretical
investigation of the question of existence and uniqueness of
solutions of the above-mentioned equation for X5 seems
unfeasible. When finding the solution, we assumed its
existence and uniqueness, in accordance with our hypoth-
esis discussed in the Results section. We located the steady
state by solving the equation for X5 (which has the form
f(X5) ¼ 0)) using MATLAB’s function fzero, given that
f(0) and f(k6/k7) have different signs, which can be tested
directly.

The method outlined above is suitable for systems with
different binding site multiplicities. In the computational
analysis of the steady-state signal–response curves, we also
considered the versions of the CovR/S model with
cooperative binding of CovR-P (see the Results section).
The strategy we used to solve the corresponding steady-
state equations is similar to the one described above. The
only difference is that the Eqs. (13)–(14) are replaced with
their sigmoidal counterparts.
3.2. Computational analysis of signal–response curves

To analyze hyperbolicity and sigmoidality of signal–re-
sponse curves we calculated the dependencies of the steady-
state concentrations on k1 for sets of randomly selected K6,
K12, m6, m12, where m6 and m12 are the Hill coefficients for
covRS and has in the cooperative case (described in the
Results section) and the binding site multiplicities in the
non-cooperative (default) case. The values of K6 and K12

were taken from interval (0, 5); m6 and m12 were taken
from interval (1, 10). The variable k1 was changing from
0.005 to 10 with step 0.005. A total of 5000 dependencies
(signal–response curves) were generated for each of the Xi

variables in the cooperative case, and another 5000 in the
non-cooperative case. When generating the dependencies,
we filtered out the results for which at least one of the
functions Xi(k1) had two consecutive identical values of the
absolute value of the derivative. This alleviated computa-
tional difficulties which could have arisen when searching
for the maxima of the derivative’s absolute value.
The approximate value of the derivative X 0iðk1Þ was
calculated as (Xi(k1+step)�Xi(k1))/step. The maxima were
defined as the points k1 such that the conditions jX 0iðk1 �

stepÞjojX 0iðk1Þj and jX
0
iðk1 þ stepÞjojX 0iðk1Þj hold simulta-

neously. To determine the multiplicities for the local
maxima of the derivative’s absolute value, we used the
following rule: the local maxima within the distance of
2� step from each other were treated as one maximum.
The purpose of this restriction was to account for spurious
local maxima resulting from computational errors.
We generated two additional sets of 5000 randomly

selected K6, K12, m6, m12 (changing in the same ranges), and
used the procedure described above to analyze the maxima
of the derivative’s absolute value for the function X8(X4) in
the cooperative and non-cooperative cases. The function
was defined by plotting X8(k1) against X4(k1), where k1 was
changing as above. To plot Figs. 8–10, we used the same
definitions of derivative and step 0.0001, but intervals for
k1 were different (k1A(0.001, 8.1) for Fig. 8; k1A(0.001, 2.1)
for Fig. 9; k1A(0.001, 10.1) for Fig. 10).

3.3. Sensitivity computations

The sensitivities of the system with respect to changes in
the parameters are defined as

sij ¼ qCi=qpj,

where Ci, i ¼ 1, y, n, are the model’s variables (concentra-
tions of the reactants), and pj, j ¼ 1,y, m, are the model’s
parameters (in our case, the rate constants and equilibrium
constants). Such sensitivities are typically studied for the
steady-state concentrations, but a generalization of this
analysis to the transient phase is also possible (Heinrich and
Schuster, 1996; Ingalls and Sauro, 2003). The logarithmic,
or relative, sensitivities are defined as follows:

ŝij ¼ q logCi=q log pj ¼ ðpj=CiÞsij.



ARTICLE IN PRESS
A.Y. Mitrophanov et al. / Journal of Theoretical Biology 246 (2007) 113–128118
While some researchers consider relative sensitivities a
more natural measure of sensitivity, the choice remains to a
large extent a matter of individual preference (Heinrich and
Schuster, 1996; Varma et al., 1999). Thus, we decided to
consider both absolute and relative sensitivities, and use
sensitivity coefficients to select candidate reactions for
exclusion.

For all the rate and equilibrium constants in system
(1)–(8), we computed the steady-state aggregate sensitivity
(sj) and relative sensitivity (ŝj) indicators (see Supplemen-
tary Table 1, Appendix B). The aggregate steady-state
sensitivity indicators are defined by

sj ¼ maxijsijj; ŝj ¼ maxijŝijj.

To compute the sensitivities, we used an approximation
of the derivative similar to the one used in the signal–re-
sponse curve analysis, with step 10�10. While the sj were the
highest for k1 and K6 (notably larger than the rest of the sj),
the sj for most other parameters were quite small (less than
0.01), which made it difficult to select the reactions to be
excluded. We then turned to the analysis of the relative
sensitivities, which allowed us to characterize k�1, k�2, and
k3 as the parameters with lowest sensitivity. For these
parameters, the quantities ŝj were smaller than 0.005; all
the other parameters had ŝj greater than 0.1. Since the
value 0.01 for a relative sensitivity can be considered as the
threshold below which the corresponding reaction can be
excluded (Varma et al., 1999), we selected k�1, k�2, and k3
as primary candidates to be set to 0. The next step was
to test if elimination of the corresponding reactions
from the model would change considerably the model’s
dynamics. To this end, we carried out computational
experiments comparing the solutions of the full model and
the reduced model (with k�1 ¼ k�2 ¼ k3 ¼ 0) on the time
interval [0, 3] (time in hours). The approximation error, e,
for the reduced and full models in the transient state was
calculated as follows:

� ¼ max
t

max
i
ðjX iðtÞ � ~X iðtÞj=X iðtÞÞ � 100%,

where Xi(t) and ~X iðtÞ, i ¼ 1, y, 8, tA[0, 3], are the reactant
concentrations for the full and reduced models, respec-
tively. For the steady-state concentrations, we used a
similar expression (without maximization over time). For
the default values of the parameters, the approximation
error was �1.2%, which is quite small; for the steady-state
values, the error was 0.2%. For delays increased seven-
fold, the approximation error did not change. Since ŝj for
k3 was orders of magnitude larger than that for k�1 and
k�2, we also estimated the system reduction accuracy for
smaller values of k3. If k3 ¼ 0.0004 (100 times smaller than
the default value), the approximation error was found to be
0.012%. If our original model had k3 ¼ 0 (a reasonable
approximation for other signal transduction systems, see
e.g. (Kremling et al., 2004)), then the only modification
required for the reduced system would be k�1 ¼ k�2 ¼ 0.
In this situation, the error would be on the order of
1� 10�5%. Based on these observations, we concluded
that the simplified model is a good approximation to the
full model, which becomes especially accurate for small k3.

3.4. Convergence analysis

To evaluate the time of convergence of the system to
steady state, we utilized the following strategy. The system
was solved on consecutive intervals of length step, until the
max-norm of the difference between the solutions at
the end-points of two consecutive steps was not larger
than the threshold accuracy. Next, we selected the time
interval of length 2 starting at the last analyzed time point,
T, and selected 1000 equally spaced time points in this
interval. If the max-norm of the difference of the solution
at T and the solutions at each of those 1000 points was not
greater than accuracy, we reported T as the convergence
time. Else, we continued integration by steps of size step,
until the above conditions were met. In our estimates of
convergence times for the system discussed in the test, we
used the parameter values step ¼ 0.05, accuracy ¼ 0.01. To
estimate the convergence time averaged over different
initial states, we performed 3000 experiments with initial
values for the system’s variables sampled independently
from the uniform distribution on interval (0, 10).
To establish the fact of existence and uniqueness of the

steady state, we performed 5000 experiments with ran-
domly selected initial conditions. The initial concentrations
were chosen from interval (0, 30). We let the system
converge from the default initial state, and then compared
the values of the system variables after convergence
with the analogous values for the trajectories started at
random initial points. To establish convergence, we used
the parameter values step ¼ 0.1 and accuracy ¼ 0.003. The
steady states were compared via the max-norm. For
the 5000 experiments, the mean max-norm was 0.0015,
and the maximum max-norm of the steady-state vector
differences was 0.0028. Analogous computations were also
performed for the two-variable system (21)–(22). In these
experiments, the maximum max-norm was found to be
0.00034, and the average max-norm was 0.00018.

4. Results

4.1. Transient behavior of the model

Since the complexity of system (1)–(8) makes analytic
investigation of its properties too difficult, we studied the
behavior of system (1)–(8) via computational experiments.
Computations were performed in MATLAB using dde23,
the function for solving DDEs. The values for the model’s
parameters were chosen (Tables 1 and 2) based on expert
knowledge and upon literature data on signal transduction
and transcription regulation systems in E. coli (Blat et al.,
1998; Yildirim and Mackey, 2003; Kremling et al., 2004).
Several parameters were adjusted so as to make the
system behavior agree with known experimental facts and
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expert opinions; for example, the equilibrium constant for
CovR-P binding to the has promoter was chosen to make
the steady-state concentration of Has on the order of
0.1 mM.

One instance of the system dynamics is shown in Fig. 2.
The figure shows convergence to steady state from rather
arbitrary initial conditions (Supplementary Table 2, Appen-
dix B). We determined the convergence time to be 0.35h,
which is approximately half the inter-division time for S.

pyogenes (about 0.75h in broth at 37 1C). The convergence
time averaged over different initial conditions was 0.8 h
(coefficient of variation 0.16). We can see that the dynamics
of X 5 and X 6 (CovR and CovS mRNA concentrations) are
slightly different (near time 0.1 h). However, the negligible
differences in the dynamics suggest the possibility of model
simplification by exclusion of one of the two variables.

We performed several thousand of computational
experiments in which initial concentrations were chosen
randomly. In all those experiments, the solutions of Eqs.
(1)–(8) showed convergence to the steady state for the
initial conditions as in Supplementary Table 2, Appendix
B. The stationary concentrations at the steady state were
close to the ones found by the algebraic method outlined in
Methods. It should be noted that a steady state of system
(1)–(8) is also a steady state of the ODE system obtained
from Eqs. (1)–(8) by setting the delays equal to 0. This
immediately follows from the fact that both the DDE and
ODE systems have the same system of steady state
equations. By linearizing the ODE system in the vicinity
of this steady state and computing the eigenvalues of the
coefficient matrix, we have shown that this steady state was
stable for the ODE system. Based on these results, we
hypothesize that the DDE system (at least for biologically
reasonable parameter values) has a stable steady state.
Also, since in our experiments all the model’s trajectories
converged to the same steady state, we conjecture that the
steady state of the DDE system is unique.
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Fig. 2. Dynamics of the DDE model for the CovR/S system.
The presence of delays is one of the distinct features of
our model, which makes it different from the signal
transduction models considered by other authors. With
delays, the behavior of the model becomes more compli-
cated, and the analysis of DDE systems is in general more
difficult than that of ODE systems. Although the necessity
of incorporating delays is dictated by the biological nature
of the processes being modeled, it is desirable to see how
important the delays are from the modeling perspective.
For that purpose, we compared the dynamics of the DDE
model (1)–(8) with that of the corresponding ODE model.
The results of this comparison are illustrated by Fig. 3. We
see that differences between the trajectories of the systems
are substantial for short-time dynamics, and become
negligible as t grows to tct, where t is the maximum
delay parameter in the model. This limiting behavior
of the differences was to be expected, since the steady-
state solutions of the DDE and the corresponding ODE
systems satisfy the same set of equations. The observed
results imply that the importance of incorporating
time delays into the model depends on the purpose of
modeling: if the investigation focuses on long-term
behavior, the delays can be neglected. However, in many
situations the strength of the signal transmitted by CovR/S
may change abruptly, and the induced changes in the
cell’s behavior are determined by the short-term dynamics
of the system. In such cases, time delays should be taken
into account.
We studied the reaction of the system to abrupt signal

changes by introducing ‘‘parameter jumps’’ for k1. Fig. 4
shows the dynamics of the system when the system at time
t ¼ 0.2 h was perturbed by a five-fold increase in the value
of k1 (corresponding to an increase in signal intensity), and
then at time t ¼ 0.9 h experienced a five-fold decrease in k1.
The initial concentrations were the steady-state concentra-
tions (the limiting ones in Fig. 2). Notably, the times of
convergence to the steady states after the first and second
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Fig. 5. Dynamics of the system with translational delays increased 7-fold.
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jumps (0.35 and 0.3 h, respectively) were quite close to the
convergence time for the dynamics shown in Fig. 2.

The discovery of the possibility of oscillations in the
systems with delays and negative feedback was an
important result in quantitative analysis of dynamical
models of transcription regulation systems (Bliss et al.,
1982; Smith, 1987; Jensen et al., 2003). Oscillations were
also shown to arise in complex eukaryotic signaling circuits
such as MAPK cascades (Kholodenko, 2000; Saez-
Rodriguez et al., 2004) and other eukaryotic signaling
pathways (Bhalla and Iyengar, 1999), as well as in generic
models of signal transduction (Soyer et al., 2006).
However, the possibility of oscillations in prokaryotic
signal transduction systems coupled with transcription
regulation remains unexplored. Thus, one of our goals was
to determine the conditions under which oscillations
(damped or sustained) are possible in the CovR/S system.
We were able to show in computational experiments that
increases in the magnitude of translational delays does
induce damped oscillations in the system. Fig. 5 shows the
evolution of the system with translational delays for CovR,
CovS and Has increased seven-fold. The convergence time
for this system (estimated to be 0.8 h) is notably larger than
that for the default delays. Further increase in delays led to
more pronounced oscillatory behavior (Fig. 6) and an
increase in the damping time (which was estimated to be
10.15 h). The necessity to consider increased delays comes
from the observation that, in bacterial cells, ‘‘delays on the
order of a few minutes are expected between transcription
initiation and the formation of the active repressor able to
negatively regulate the activity of its own promoter’’
(Rosenfeld et al., 2002). These results show that oscillations
indeed may be possible in the systems similar to
Eqs. (1)–(8), as the time of transcription and translation
varies among different genes. In eukaryotic cells, the orders
of magnitude for the delays can be tens of minutes (Jensen
et al., 2003). Thus undamped oscillations can potentially
arise in two-component signal transduction/transcription
regulation systems in eukaryotes.

4.2. Steady-state analysis

Finding the steady-state concentrations by analyzing the
convergence of the solution of Eqs. (1)–(8) in many cases is
inconvenient. An easier and faster way would be to solve
the steady-state equations implied by Eqs. (1)–(8). The
steady state equations can be obtained from Eqs. (1)–(8) by
setting the time derivatives equal to zero. We developed an
efficient method to solve this system of nonlinear algebraic
equations (see Methods).
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The steady-state analysis of Eqs. (1)–(8) is especially
important when considering the response of the system
to the changes in the stimulus intensity (described by
the changes in k1). It is worthwhile to investigate the
dependency of the steady-state response level on the
intensity of the detected signal. In this setting, we are
interested in the response function that defines the steady-
state concentration of X3 (the response regulator CovR) as
a function of k1. Particularly, an important question to ask
is whether this signal–response curve is sigmoidal. The
notion of curve sigmoidality in the context of biochemical
regulation is usually related to the possibility of approx-
imating the curve by the Hill curve with the Hill coefficient
greater than 1 (see Supplementary material Appendix B)
(Goldbeter and Koshland, 1981; Koshland et al., 1982;
Ferrell, 1996; Huang and Ferrell, 1996; Ferrell and
Machleder, 1998). Examples of a non-sigmoidal (hyper-
bolic) and a sigmoidal curves in the case of repressing
signal are shown in Fig. 7. Here the equation for the
hyperbolic curve is

½Response� ¼ a=ð1þ b½Signal�Þ5

and the equation for the sigmoidal curve is

½Response� ¼ a=ð1þ b½Signal�5Þ;

the values of a40 and b40 were the same in both cases.
The equation for the sigmoidal curve is a Hill-type
equation with the Hill coefficient 5; see e.g. (Acerenza
and Mizraji, 1997). It is easy to see that the sigmoidal
function gives a higher response level for weak signal and a
lower response level for strong signal than the hyperbolic
curve with the same parameters. Hence, the changes in the
response values for sigmoidal curves are generally more
abrupt than for hyperbolic curves. Although in Fig. 7 we
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show only the graphs of decreasing functions, both
hyperbolic and sigmoidal functions can be increasing; in
the context of transcription regulation, increasing signal–
response functions correspond to positive regulation. The
more general definition of sigmoidality given below is
applicable for both decreasing and increasing functions.
While the Hill equation-based definition may be

sufficient for some practical cases, we find it necessary to
consider a more general definition of sigmoidality. We call
a function sigmoidal if there are points at which the
response function changes between being strictly convex
and strictly concave. At some of such points, the steepness
(absolute derivative) of the signal–response curve has a
local maximum; such points can be regarded as ‘‘thresh-
olds’’. The presence of a threshold implies switch-like
properties of the signal transduction system, with sub-
threshold values of signal intensity defining one level of
response, and superthreshold values determining another
level. The thresholds of a sigmoidal signal–response curve
are means of converting gradual changes in the signal into
discrete response; systems with hyperbolic response curves
convert gradual input into gradual output. Thus the
response structure in the sigmoidal and hyperbolic cases
is qualitatively different.
Since the repression of transcription in our model is

performed by CovR-P (X4), the phosphorylated form of
CovR, it is of interest to consider the dependency
X4 ¼ X4(k1). In addition to the dependencies of X3 (CovR
concentration) and X4 on k1, we can also investigate the
function X8 ¼ X8(k1), which shows the influence of the
signal intensity on the expression of Has (a protein
controlled by CovR).
We generated steady-state signal–response curves for all

the variables in the system by numerically solving the
steady state equations for different values of k1. These
dependencies (Fig. 8) demonstrate hyperbolicity of all the
response functions; we established hyperbolicity by verify-
ing that the numerical derivatives of the functions are all
monotonic. The signal–response function for CovR (X3) is
a monotonically decreasing function, with X3-0 as k1-
N; for Has (X8), the picture is similar. Interestingly, the
concentration of CovR-P (X4) grows with k1, showing that
the increase in CovR phosphorylation rate has a greater
influence on the CovR-P concentration than the decrease in
the speed of CovR synthesis. In the next subsection, we
describe the results of our analytic investigation of the
signal–response function for a simplified CovR/S model.
In addition to the model (Section 2) with no cooperativity

in binding of the regulator protein (CovR-P), we considered
a model with cooperative binding of CovR-P to the covRS

and has promoters. In this case, we used Hill-type functions
(see Supplementary material Appendix B) for the rate of
mRNA synthesis. For example, the expression for the CovR
mRNA synthesis rate had the form

Rate ¼
k6

1þ K6½CovR�P�
m6

,
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where m6 is the Hill coefficient (by default, we take
m6 ¼ m12 ¼ 5, where m12 is the Hill coefficient for binding
to the has promoter). For the default parameter values, our
computations have shown that cooperative binding results
in the sigmoidality of signal–response curves (Fig. 9).

We also performed several thousand of computational
experiments with the values of binding constants and Hill
coefficients (positive integers) selected at random. More
than 99% (but not all) of the simulated sets of seven
signal–response curves had at least one sigmoidal curve.
We did not observe sigmoidality for CovS-P. We
performed similar computations for the model with non-
cooperative binding, varying the binding constant values
and the multiplicities of binding sites. Here, the cases of
sigmoidality of signal–response functions occurred, but
were less frequent (73% of all cases). Interestingly, in the
non-cooperative case only the curves for Has and Has
mRNA concentrations could be sigmoidal (and always
either both sigmoidal or both hyperbolic). Thus, we
conclude that sigmoidality is practically a rule for systems
with cooperative binding, and can also be frequently
encountered for systems with non-cooperative binding of
the regulatory protein. Notably, all sigmoidal curves in the
experiments described above had only one local maximum
point for the absolute value of the derivative; the curves for
CovS-P and CovR-P were strictly monotonically increas-
ing, while the curves for all other variables were strictly
monotonically decreasing.
While the signal detected by the CovR/S system serves as

a trigger for the cellular control mechanism, the control
itself is effected by the transcription regulator, CovR-P. It
is thus of interest to investigate another type of signal–
response curve, the one in which the concentration of
CovR-P is plotted against the concentration of the
controlled protein (Has) as k1 changes in a certain range.
To obtain this type of dependence, we performed simula-
tions similar to the ones described above. Upon observing
sigmoidal behavior we focused only on those cases in which
sigmoidality was sufficiently pronounced so that the local
maximum of the absolute value of the derivative was above
a threshold chosen to be tan(p/6) ¼ 0.577. As a result, we
found that sigmoidality was typical for cooperative systems
(94% of the curves were above-threshold sigmoidal), while
hyperbolicity was more typical for non-cooperative ones
(46% of curves were above-threshold sigmoidal). All
curves were monotonically decreasing, and all sigmoidal
curves had only one local maximum point for the absolute
value of the derivative.
For the cooperative system mentioned above, and also

for the system with no cooperativity (varying the multi-
plicity of the ‘‘Has’’-like binding sites for CovR-P instead)
we have plotted the sigmoidality graphs for different values
of the Hill coefficients and the coefficient K12. The plots in
Fig. 10 show the dependency of the local maxima of the
absolute value of the derivative on these parameters for the
cooperative case. In the non-cooperative case, the picture is
similar (data not shown).

4.3. Analysis of the reduced model

The complexity of the full model (1)–(8) makes its
analytic investigation unfeasible. Therefore we attempted
to identify a simpler, analytically tractable version of the
initial model by model reduction, setting the rate constants
of the reactions, which can be eliminated from the model
without changing the model’s dynamics, equal to 0. We
identified such reactions using sensitivity analysis (Heinrich
and Schuster, 1996; Varma et al., 1999) as described in
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Methods. The remarkable advantage of this reduced model
comes from the fact that certain aspects of the reduced
model’s steady-state behavior can be studied analytically;
see Appendix A for details. We were able to obtain an
explicit expression for k1 as a function of the steady-state
concentration of X3 (CovR concentration); that function is
monotonically decreasing. The monotonicity implies that
the inverse of this function uniquely defines the function
X3(k1). Since all other concentrations can be uniquely
expressed in terms of X3, we came to the conclusion that
the reduced system has a unique positive steady state
solution. The main result of the analytic investigation was
our proof that the signal–response functions X1(k1), X3(k1),
X4(k1), and X5(k1) (the concentrations of CovS, CovR,
CovR-P, and CovR mRNA, respectively) for the reduced
non-cooperative system cannot be sigmoidal for all
possible rate and equilibrium constant values, and arbi-
trary binding site multiplicities.
5. Discussion

We have developed a DDE model of the CovR/S signal
transduction/transcription regulation system in S. pyo-

genes, and investigated its properties. We have identified
the major features of the dynamic behavior of the system:
existence, uniqueness and stability of the steady state, and
the possibility of oscillations. While the oscillations arise as
a consequence of increased delays in the system, even
relatively small delays cause noticeable differences between
the dynamics of the DDE and the corresponding ODE
systems. In the case of small delays, the long-term
dynamics of the DDE system may be well approximated
by that of the system without delays.
The existence and uniqueness of the steady state

indicates that, in the case of the CovR/S system, evolution
has chosen a straightforward way of developing a
molecular sensor. Systems with a unique steady state
demonstrate the simplest possible limiting behavior (as
opposed to sustained oscillations, multistability, hysteresis,
chaos, etc.). Apparently, in the case of a two-component
system such as the CovR/S system this simplicity is
sufficient for functionality. Moreover, memory-like proper-
ties such as hysteresis and irreversibility, that can be
observed in more complex bistable systems (Ferrell, 2002),
may in fact be deleterious in a system designed to promptly
detect the current state of the microenvironment. In a
CovR/S-type system with a unique steady state, an
additional advantage comes from the versatility of the
steady-state response, which can be of both hyperbolic
(gradual) and sigmoidal (switch-like) types, depending on
the parameter values. We also suggest that systems with
simpler dynamics are easier to integrate into complex
biochemical networks. If this is correct, features like unique
steady state should be expected in many elementary
biochemical blocks that the sophisticated molecular
machinery of the living cell comprises.
The biological role of oscillatory behavior in two-

component transduction systems remains to be uncovered.
Probably the best-known system where oscillations evi-
dently perform a biological function is the circadian clock
(Lema et al., 2000; Sriram and Gopinathan, 2004). There,
biochemical oscillations reflect the relationship between the
cellular processes and the environmental light–dark
cycle with period 24 h. In other biochemical systems, e.g.,
the glycolytic pathway (Garcia-Olivares et al., 2000),
oscillations appear to be present primarily as a benign
consequence of the structure and the parameter values of
the system. The currently available knowledge about signal
transduction systems does not allow us to point out a
particular functional advantage that oscillations per se may
provide. Therefore, they seem to be a collateral result of the
action of evolutionary factors that maintain the function-
ality of the system in the specific biochemical context.
Evidence exists that oscillations can arise in the signal
transduction systems responsible for chemotaxis as a result
of a mutation, thus being an anomaly (Rao et al., 2004).
The role of oscillations in the CovR/S system will be
clarified when more experimental data on the dynamics of
the system under different conditions will be available.
Being a two-component regulatory system with a feed-

back loop, the CovR/S system can be viewed as consisting
of two functional modules. One of these modules centers
around CovS and is responsible for signal transmission,
and the other module is the gene expression control module
containing the negative feedback loop. This module
representation has a clear intuitive meaning. Recently,
modular analysis of biological systems has attracted much
attention, as it can simplify the investigation of large
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complex systems once the behavior of the constituent
modules is well understood (Saez-Rodriguez et al., 2004;
Saez-Rodriguez et al., 2005).

In the case of the CovR/S system, a natural question is to
what extent the behavior of the complete system is
determined by the properties of the transcription regula-
tion module. This question can be answered by comparing
the behavior of the CovR/S system model with that for a
one-gene expression control system with a negative feed-
back. The equations for this system have the form

dMðtÞ=dt ¼ a=ð1þ KPðt� t1ÞÞ
5
� bMðtÞ, (21)

dPðtÞ=dt ¼ cMðt� t2Þ � dPðtÞ, (22)

where M and P are the concentrations of the mRNA and
the protein, respectively, and a, b, c, d, K are positive
constants.

Our experiments with system (21)–(22) demonstrated
(data not shown) that its unique steady state is stable,
and that oscillations are possible, tending to be more
pronounced as the delay times increase (for zero delays
there are no oscillations). Similar results concerning
systems akin to Eqs. (21)–(22) were obtained earlier
(Griffith, 1968a, b; Banks and Mahaffy, 1978; Bliss et al.,
1982; Smith, 1987; Jensen et al., 2003). It is clear from our
description of the CovR/S system dynamics that the above
features are characteristic of the two-component system
model as well. Thus, the major behavioral features such as
uniqueness and stability of the steady state and the
possibility of oscillations for large delays are shared by
both the CovR/S model and the simple transcription
regulation system. It seems plausible that these features are
generally determined primarily by the transcription regula-
tion modules of two-component systems, and thus can be
predicted from the analysis of the simplified one-protein
model similar to Eqs. (21)–(22). We conjecture that this
pattern holds for all types of prokaryotic two-component
systems with negative feedback.

The behavior of signal transduction systems having a
single steady state in response to jump-like changes in
signal intensity served as a basis for classifying the systems
into four categories: systems with no adaptation, with
partial adaptation, complete adaptation, and over-adapta-
tion (Koshland et al., 1982; Asthagiri and Lauffenburger,
2000). If an increase in the signal results in an increase in
the value of the response variable, then, in systems with no
adaptation, the response grows monotonically until it
reaches a new steady-state value. In systems with partial
adaptation, the value of the response variable grows with
an overshoot and then settles at a new steady state. In
systems with complete adaptation, the new steady state
value for the response variable is the same as the one before
the jump, so the increase in the value of the response
variable is transient. Systems with over-adaptation can be
characterized as the ones whose new steady-state response
value (after an overshoot) is lower than the one before the
jump. Our modeling results (Fig. 4) show that the CovR/S
system is a system with partial adaptation for some of the
variables (e.g. [CovR-P], [CovS-P]) and (almost) no
adaptation for others (e.g. [CovR]). Koshland et al.
(1982) suggested that this is the type of response to be
expected in a system which combines a negative feedback
loop with delays; our studies confirm this suggestion. While
it is unclear what signal is transduced by the CovR/S
system, the type of response can shed light on the nature of
the signal. Partial adaptation was described as a response
type which is suitable for systems that do not need a very
high level of sensitivity. Systems that do, e.g., the ones
involved in chemotaxis, demonstrate complete adaptation
response. This observation indicates that the systems
which, like the CovR/S system, include a negative feedback
loop and delays, are unlikely to participate in chemotaxis
(and, probably, in other type of taxis) reactions. In
mammals, partial adaptation is characteristic of hormonal
signaling (Koshland et al., 1982). If the CovR/S system
triggers the GAS cell’s transition to virulence in response to
chemical changes in the surrounding environment, we may
conjecture that partial adaptation is often a property of
prokaryotic and eukaryotic signal transduction systems
responsible for the detection of chemical substances which
have a potential to induce profound changes in the cell’s
metabolism. This conjecture may serve as a guideline when
analyzing the yet unknown role of signal transduction
systems with known dynamical properties.
In certain mammalian signal transduction systems, the

transition between different response levels is facilitated by
bistability (Ferrell and Xiong, 2001; Ferrell, 2002; Tyson
et al., 2003; Angeli et al., 2004). In such systems, the
adaptation mechanism is irrelevant (Koshland et al., 1982).
To exhibit bistability, a system must possess certain
structural properties such as a positive (or double-negative)
feedback loop (Ferrell, 2002). The two-component bacter-
ial signal transduction system studied by Kremling et al.
(2004) did not exhibit bistability. Probably, monostability
is a typical property of bacterial two-component signal
transduction, reflecting the general ‘‘simplicity’’ of bacteria
compared to eukaryotic organisms. However, it can be
shown that adding a second negative feedback loop to the
CovR/S-type system is sufficient for bistability. Real-life
examples of such systems are yet to be found.
Multistability in a signal transduction system manifests

itself in several response levels. Monostable systems can
exhibit several response levels due to sigmoidality. As
cooperative binding is described by sigmoidal binding
curves, it is possible to hypothesize that cooperative
binding leads to sigmoidal signal–response curves. Our
results show that this association indeed holds, especially
for cooperative systems, but only on the average, and with
certain exceptions.
Particularly, rigorous treatment of formally defined

sigmoidality (with k1 as the independent variable) in the
simplified model of the non-cooperative CovR/S system
allowed us to conclude that sigmoidality is impossible for
the concentrations of CovS, CovR, CovR-P, and CovR
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mRNA as functions of k1. The simulations show that the
same statement holds for the full non-cooperative model.
On the other hand, in the non-cooperative case the
sigmoidal behavior is rather typical for Has mRNA and
Has. This fact explains the difficulties in analytical
treatment of these variables, since the type of system
behavior depends on the parameter values along with the
model structure rather than on the model structure alone.

For [Has] vs. [CovR-P] response curves (Fig. 10),
sigmoidality seems to be typical for cooperative systems,
and quite frequent for non-cooperative ones. In general,
signal–response curves of sigmoidal type are associated with
elevated sensitivity and more precise control (Koshland et
al., 1982). The close association of cooperativity and
sigmoidality suggests that cooperative binding can be
favored in evolution if the sigmoidality feature of signal–re-
sponse curves is to be selected.

Not only did the sensitivity-based simplification proce-
dure allow us to give analytical treatment to the properties
of the signal–response characteristics, but it also made it
possible to analyze the interactions of the CovR/S system
with other biochemical pathways in the cell. This can be
illustrated by the analysis of the role of the external
phosphoryl donor X-P in the dynamics of the CovR/S
system. X-P is assumed to be a small molecule, a standard
element of the cell’s normal metabolism, such as acetyl
phosphate AcP (we used the data from Blat et al., (1998) on
AcP phosphorylation of CheY to derive the value for k3).
While the rate of phosphorylation of CovR by X-P is
relatively high, the dynamics of the CovR/S system is
insensitive to changes in the intensity of this process. This
fact sheds light on the role of phosphorylation by the
external donor. In normal cells, CovS-P is always present,
and we see that in this situation phosphorylation by X-P
has negligible influence. Therefore, one reasonable sugges-
tion is that phosphorylation by X-P is a result of some
crosstalk between phosphorylation circuits, which was
conserved in evolution in the presence of negative or
neutral selection. Therefore, the analysis of sensitivities of
the system to perturbations may lead to insights into the
evolution of biological functional systems.

As already mentioned, our model describes the dynamics
of the signal transduction system averaged over a popula-
tion of cells, or in a cell-free extract containing all necessary
biochemical components. To improve our understanding
of the dynamics of signal transduction systems in bacteria,
it is necessary to model the signal transduction/transcrip-
tion regulation processes occurring in a single cell. Such a
description cannot be obtained using the ODE/DDE
formalism, since the numbers of molecules for some of
the chemical species involved are so small that their
stochastic fluctuations need to be taken into account.
Therefore, a stochastic model for the CovR/S system needs
to be developed. While the traditional Markov stochastic
modeling methodology does not allow the introduction of
delays into the stochastic system, a probabilistic approach
to modeling chemical systems with delays was recently
proposed (Bratsun et al., 2005). A stochastic model will
allow us to investigate the role of fluctuations in signal
transduction, in order to see to what extent random events
can cause the system’s self-excitation leading to behavioral
response on the cellular level.
In conclusion, we would like to emphasize the generality

of our approach. Conventional approaches to modeling
signal transduction have recently been criticized for
generating knowledge about specific systems which is not
easily convertible to knowledge about other types of signal
transduction systems (Soyer et al., 2006). Our approach
does not suffer from this shortcoming, as it allows us to
generate reasonable hypotheses concerning other systems
and provides means to test these hypotheses. To investigate
the properties of the CovR/S two-component signal
transduction in S. pyogenes, we have developed a new
methodology applicable to a broad range of signal
transduction systems. The essential features of our
approach are: (a) explicit use of transcriptional and
translational delays; (b) development of an efficient
procedure to find the steady-state solution to the
dynamic equations, which allowed us to construct steady-
state signal–response curves; (c) use of a rigorous and
general definition of sigmoidality; (d) use of sensitivity
analysis to reduce the full model to a model which can be
investigated analytically. The natural next step is to apply
our methodology to two-component systems with positive
feedback and systems of other types.
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Appendix A. Analysis of the signal–response curves for the

reduced model

Here we formulate and prove the mathematical results
concerning the CovR/S system model obtained as a result
of system reduction. The first four steady-state equations
for the reduced system are as follows:

k2X 2X 3 þ k5X 2 þ k10X 5 ¼ k1½ATP�X 1 þ k11X 1, (A.1)

k2X 2X 3 þ k5X 2 ¼ k1½ATP�X 1, (A.2)

k2X 2X 3 þ k9X 3 ¼ k4X 4 þ k8X 5, (A.3)

k2X 2X 3 ¼ k4X 4. (A.4)

The remaining three equations coincide with Eqs.
(13)–(15). We first concentrate on system {(A.1)–(A.4),
(13)} for X1, X2, X3, X4, and X5.
Eqs. (A.1)–(A.4) imply that Eqs. (16) and (17) hold.

Combining Eq. (A.2) with Eqs. (16) and (17), we get

X 3 ¼
k5X 2

k1a� k2X 2
, (A.5)
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where a ¼ [ATP]k10k9/(k11k8). Using Eq. (A.4) together
with the expression for X4 obtained from Eqs. (13) and
(17), we obtain the formula for X2:

X 2 ¼
k4X 4

k2X 3
¼

f ðX 3Þ

X 3
, (A.6)

where

f ðX 3Þ ¼
k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk6k8=k7k9X 3Þ

5
p

� 1
� �

k2K6
.

Note that Eq. (A.6) only makes sense if k6k8/(k7k9)4X3,
which is equivalent to X5ok6/k6 (Eq. (19)). Expression
(A.6) combined with Eq. (A.5) implies

X 3 ¼
k5f ðX 3Þ

k1aX 3 � k2f ðX 3Þ
,

which yields

k1 ¼
k5f ðX 3Þ þ k2f ðX 3ÞX 3

aX 2
3

. (A.7)

Since f(X3) does not depend on k1, Eq. (A.7) provides an
explicit formula for k1 in terms of X3. This equation forms
the necessary basis for our analysis of the solution of
system {(A.1)–(A.4), (13)}.

Denoting by h(X3) the right-hand side of Eq. (A.7), we
formulate the following proposition.

Proposition 1. The function h(X3) is monotonically decreas-

ing for X3A(0, k6k8/(k7k9)). Moreover, h(0) ¼N, and

h(k6k8/(k7k9)) ¼ 0.

Proof. Follows directly from the definition of h(X3).

Corollary 1. System {(A.1)–(A.4), (13)–(15)} has a unique

positive solution.

Proof. Fix arbitrary positive k1, and consider Eq. (A.7) as
an equation in X3. It follows from Proposition 1 that this
equation has a unique positive solution. As follows from
Eqs. (13), (16) and (17), the corresponding positive values
of X1, X4 and X5 are uniquely determined by X3. It follows
from Eq. (A.2) that

X 2 ¼
k1½ATP�X 1

k2X 3 þ k5
.

This expression implies that X2 is positive and uniquely
defined, if X3 is. Therefore, system {(A.1)–(A.4), (13)} has a
unique positive solution. As follows from Eqs. (14) and
(15), the concentrations X7 and X8 are uniquely determined
by X5, and are positive if X5 is.

The equation X3 ¼ h�1(k1) describes a signal–response
curve for the system. As was discussed in the Results
section, one of the most important questions to be asked
about such curves is whether they can be sigmoidal. To
answer this question for the equation X3 ¼ h�1(k1), we will
first consider the dependency k1 ¼ k1(X4). Expressions
(A.5) and (A.6) yield

X 3 ¼
k5k4X 4=ðk2X 3Þ

k1a� k4X 4=X 3
,

which implies

k1 ¼
k5k4k

�1
2 X 4 þ k4X 4X 3

aX 2
3

. (A.8)

Formulas (13) and (17) give X3 ¼ x(1+K6X4)
�5, where

x ¼ k6k8/(k7k9). Plugging this into Eq. (A.8) gives

k1 ¼
k5k4k

�1
2 X 4

ax
ð1þ K6X 4Þ

10
þ

k4X 4

ax
ð1þ K6X 4Þ

5. (A.9)

This formula implies that k1 ¼ k1(X4) is a monotonically
increasing function. Therefore, Eq. (A.9) can be inverted,
and the uniquely defined function X4 ¼ X4(k1) exists, and is
monotonically increasing.

Theorem 1. The signal–response curve described by

X4 ¼ X4(k1) is hyperbolic.

Proof. Using the definitions of strict convexity and
concavity, and the fact that X4(k1) is monotonically
increasing, it is easy to show that, if X4(k1) is strictly

convex (concave) on ðk
ð1Þ
1 ; k

ð2Þ
1 Þ, then k1(X4) is strictly

concave (convex) on ðX 4ðk
ð1Þ
1 Þ; X 4ðk

ð2Þ
1 ÞÞ. Therefore,

X4(k1) is sigmoidal only if k1(X4) is. Strict convexity

(concavity) of k1(X4) on ðX
ð1Þ
4 ;X

ð2Þ
4 Þ is equivalent to

k001ðX 4Þ40 ðk001ðX 4Þo0Þ on this interval, if k001ðX 4Þ exists.

Therefore, if k001ðX 4Þ is continuous, we should have

k001ðX̂ 4Þ ¼ 0 for X̂ 4 separating the interval on which

k1(X4) is strictly convex from the interval on which it is

strictly concave. As follows from Eq. (A.9), k001ðX 4Þ is

continuous and positive in its domain of definition, which
proves the theorem.

Theorem 2. The signal–response curve described by

X3 ¼ X3(k1) is hyperbolic.

Proof. We can write k1(X3) ¼ F(G(X3)), where the function
X4 ¼ G(X3) is defined by Eqs. (13) and (17), and the
function k1 ¼ F(X4) is defined by Eq. (A.9). We have

k01ðX 3Þ ¼ F 0ðGðX 3ÞÞG
0ðX 3Þ, (A.10)

k001ðX 3Þ ¼ F 00ðGðX 3ÞÞ½G
0ðX 3Þ�

2 þ F 0ðGðX 3ÞÞG
00ðX 3Þ. (A.11)

For appropriately defined constants b,g40,

GðX 3Þ ¼ bX
�1=5
3 � g,

which implies G0(X3)o0 and G00(X3)40. From expression
(A.9), it follows that F0(X4), F00(X4)40. These facts,
combined with Eq. (A.11), show that k001ðX 3Þ40, that is,
k1 ¼ k1(X3) is hyperbolic. Formula (A.10) implies that
k1(X3) is monotonically decreasing. Thus, by the argument
similar to the one used in the proof of Theorem 1, we
conclude that the inverse function, X3 ¼ X3(k1), also is
hyperbolic.
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Corollary 2. The functions X1 ¼ X1(k1) and X5 ¼ X5(k1) are

hyperbolic.

Proof. Follows from Theorem 2 and the fact that X1 and
X5 are proportional to X3.

Remark. Theorems 1 and 2, and Corollary 1 hold for
systems analogous to {(A.1)–(A.4), (13)} with arbitrary
number, m6, of non-interacting binding sites for the
repressor self-regulation.

Appendix B. Supplementary Materials

The online version of this article contains additional
supplementary data. Please visit doi:10.1016/j.jtbi.2006.11.009.
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