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Abstract 
 
We consider the chemical reaction ABBA ↔+  taking place in a compartment of 
volume V , which  contains M  and N , NM ≥ , particles of species A  and B , 
free or bound. We investigate two stochastic models of the reaction – the quadratic 
and the linear models. These models are homogeneous birth and death processes 
with state space },,1,0{ N . We derive inequalities which allow to estimate the 

accuracy of approximation of the state probability vectors, both transient and sta-
tionary, of the quadratic model by the state probability vectors of the linear model 

as ∞→VM , , =− MV 1 const. We show that, if N  is small, these inequalities give 

estimates which are of the same order as exact values of the norms of differences 
of the corresponding state probability vectors. 
 
1. Introduction 
 

We study stochastic mesoscopic models of the reversible chemical reaction 
of formation of binary complex 

А+В    

Mesoscopic m
small, and ran
corresponding
cles and micr

 
k1

        АВ.                                                                                       (1) 
 

     
k-1

odels are used in cases when the number of reacting particles is 
dom deviations of concentrations of the reacting particles from the 
 mean values should be taken into account [1–5]. Intracellular vesi-

obiosensors are examples of systems that contain a small number of 
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particles [6, 7]. The interaction of  regulatory proteins with their target sites in a 
bacterial cell can also be formalized by the reaction (1), and, owing to smallness 
of the number of interacting particles (units, tens), the deviations of their 
concentrations from the mean values can be large [8, 9]. 

The deterministic rate equation for the reaction (1) has the form 

)())())(((/)( 11 tnktnbtnakdttdn −−−−= ,      0≥t ,                                  (2) 

where 1k  and 1−k  are the rate constants for the forward and backward reactions in 

(1), )(tn  is the concentration of species AB , a  and b  are the overall concentra-

tions of the free and bound forms of species A  and B ,  respectively [10]. It is as-
sumed  that, for all 0≥t , the temperature of the chemical system equals some 
constant T  throughout the volume of the system. 

If ab << , then at all times atn <<)( , therefore, the changes in the concen-

tration of free A  particles can be neglected. In this case, the forward reaction in 
(1) is a pseudo-first order reaction with rate constant ak1 , and its rate equation has 

the form 

)())((/)( 11 tnktnbakdttdn −−−= .                                                               (3) 

Such an approximation is frequently used by practitioners [1]. 
We denote by M  and N  the numbers of A  and B  particles (free as well as 

bound) in a compartment of volume V . We assume that NM ≥ , and that the 
changes in the number of AB  particles can be described by homogeneous birth 

and death processes =),( VMX }0),({ ),( ≥ttX VM  and =)(aY }0),({ )( ≥ttY a , 

MVa 1−= , with state space },,1,0{ NSN = . The processes ),( VMX  and )(aY  

are the stochastic models of the reaction (1) that correspond to the rate equations 
(2) and (3) (we shall call these models the quadratic model and the linear model, 
respectively). In this paper, expressions are obtained that allow to estimate the ac-
curacy of approximation of the state probability vectors, both transient and sta-

tionary, of the process ),( VMX  by those of the process )(aY  as ∞→VM , , 

=− MV 1 const.  
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The process )(aY  is a special case of the Prendiville process. For many 
characteristics of this process (transition probabilities, mathematical expectation, 
variance), explicit formulae exist [11]. Consequently, by using the linear model 
instead of the quadratic model, one can substantially simplify the study of the con-
sidered chemical system.  

 
2. The quadratic and the linear models 
 

The quadratic model of the reaction (1) is similar to the stochastic model of 
the reaction CBA ↔+  considered in [12]. The birth rates of the processes 

),( VMX  and )(aY  are defined by ))((1
1

)( nNnMVkX
n −−=λ −  and =λ )(Y

n  

)(1 nNak − , and the death rates are given by =µ )( X
n =µ )(Y

n nk 1− , NSn ∈ . As it is 

seen from the expressions for the birth rates, )()( Y
n

X
n λ≈λ  when NM >> , and in 

this case the linear model can be used instead of the quadratic model. Let us intro-

duce the notation: })({)( ),()( ntXPtp VMX
n == , =)()( tp Y

n })({ )( ntYP a = , 

=)()( tp X ))(( )( tp X
n , =)()( tp Y ))(( )( tp Y

n , Nn ,,1,0= . We consider the follow-

ing two types of initial distributions for the processes ),( VMX  and )(aY : 

1. There exists such NSj ∈0  that 1)0()(
0

=X
jp ; in this case 1)0()(

0
=Y

jp ,  

0)0()0( )()( == Y
n

X
n pp ,  NSn ∈ ,  0jn ≠ ;                                                              (4) 

2. )()( ~)0( XXp π= ,  )()( ~)0( YYp π= ,                                                             (5) 

where )(~ Xπ  and )(~ Yπ  are the stationary distributions of the birth and death proc-

esses ),(~ VMX  and )(~ aY  with state space NS , birth rates =λ )(~ X
n  

))((~ 1
1 nNnMVk −−− , =λ )(~ Y

n )(~
1 nNak −  and death rates =µ )(~ X

n =µ )(~ Y
n nk 1

~
− , 

NSn ∈ . The processes ),(~ VMX  and )(~ aY  in the stationary state describe the evolu-

tion of the considered chemical system in the state of chemical equilibrium at a 

temperature 0T . It is assumed that the reaction (1) is exothermic, and that 1
~k , 1

~
−k  

satisfy the inequality >−11
~/~ kk 11 / −kk . This inequality implies that TT <0 , since 

the chemical equilibrium shifts to formation of free A  and B  particles as the tem-
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perature of the system increases. It is also assumed that when 0<t , the tempera-
ture of the system equals 0T , and when 0≥t , it is equal to T , that is at time 0=t , 

a “temperature jump” occurred in the system [10]. The quantities 1
~k  and 1

~
−k  are 

the rate constants for the reaction (1) before the temperature jump. In this case, it 
can be assumed that for 0≥t , the evolution of the system is described by the proc-

esses ),( VMX  and )(aY  with the initial distributions (5). 

Let us introduce the notation: )(lim )()( tp X
nt

X
n ∞→

=π , )(lim )()( tp Y
nt

Y
n ∞→

=π , 

=π )( X )( )( X
nπ , )( )()( Y

n
Y π=π , Nn ,,1,0= . The probabilities )( X

nπ  can be found 

using the formulae [12]:  

1
11

)(
0

)( ])!()!(!)[(!! −
− −−π=π nNnMnVkNMk nnXX

n , 

Nn ,,2,1= ; )(
0
Xπ  can be obtained from the condition 1)( =π X

n . The probabili-

ties )(Y
nπ  are given by the expressions [11]: 

NnNnY
n kakkak

n
N −

−
−

− +




=π )()( 1111
)( ,      NSn ∈ .             

Let us establish a correspondence between the stochastic and deterministic 

models of the reaction (1). The expectation, )(tx , of the process ),( VMX  satisfies 

the differential equation 

∑
=

µ−λ=
N

n

X
n

X
n

X
n tpdttdx

0

)()()( )(][/)( ,      0≥t . 

Using the expressions for the birth and death rates of  the process ),( VMX , we get 

)()](var))())(([(/)( 1
),(1

1 txktXtxNtxMVkdttdx VM
−

− −+−−= . 

Consequently, the expectation, )(tc , of the process ),(1),( VMVM XVC −=  satisfies 

the differential equation 

)()](var))())(([(/)( 1
),(

1 tcktCtcbtcakdttdc VM
−−+−−= .                      (6) 
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If )(var))())((( ),( tCtcbtca VM>>−− , then, neglecting the variance 

)(var ),( tC VM  in (6), we arrive at the equation (2). It can be shown that if 

∞→VNM ,,  in such a way that aMV =−1 , bNV =−1 , and if 

0
),(

,,
)0(lim nC VM

VNM
=

∞→
, then  

0)()(suplim ),(
,,

=






 ε>−

τ≤∞→
tntCP VM

tVNM
,      ],0[ τ∈t , 

for all 0>ε , where )(tn  is the solution of the equation (2) for the initial condition 

0)0( nn =  [12]. 

It can also be easily shown that the expectation, )(ty , of the process )(aY  

satisfies the equation 

)())((/)( 11 tyktyNakdttdy −−−= ,      0≥t .                                            (7) 

Dividing this equation by V , we obtain the equation (3). 
 
3. The transient  
 

The vectors )()( tp X  and )()( tp Y , 0≥t , satisfy the differential equations 

)(/)( )()()( tpLdttdp XXX =                                                                           (8) 

and 

)(/)( )()()( tpLdttdp YYY = ,                                                                           (9) 

where the matrices )( XL  and )(YL  are the transposed transition rate matrices of the 

processes ),( VMX  and )(aY . 

Proposition. For the matrices )( XL , )(YL  the equality 

LVLL YX 1)()( −+=                                                                                      (10) 

holds, where the matrix L  does not depend on M , V . 
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Proof. The systems (8) and (9) are of the form 

)()(/)( )(
11

)(
0

1
1

)(
0 tpktMNpVkdttdp XXX

−
− +−= ,  

)()1)(1(/)( )(
1

1
1

)( tpnNnMVkdttdp X
n

X
n −

− +−+−=  

                    )(]))(([ )(
1

1
1 tpnknNnMVk X

n−
− +−−−                        

                    )()1( )(
11 tpnk X

n+− ++ ,                                  1,,2,1 −= Nn ,       

)()()1(/)( )(
1

)(
1

1
1

)( tNpktpNMVkdttdp X
N

X
N

X
N −−

− −+−= ,                                    (11) 

and 

)()(/)( )(
11

)(
01

)(
0 tpktaNpkdttdp YYY

−+−= ,                 

)(])([)()1(/)( )(
11

)(
11

)( tpnknNaktpnNakdttdp Y
n

Y
n

Y
n −− +−−+−=  

                   )()1( )(
11 tpnk Y

n+− ++ ,                                  1,,2,1 −= Nn ,              

)()(/)( )(
1

)(
11

)( tNpktapkdttdp Y
N

Y
N

Y
N −− −= .                                                             (12) 

Write (11) in the following form: 

)}()({/)( )(
11

)(
0

1
1

)(
0 tpktMNpVkdttdp XXX

−
− +−= , 

)()1({/)( )(
1

1
1

)( tpnNMVkdttdp X
n

X
n −

− +−=  

                    )}()1()(])([ )(
11

)(
1

1
1 tpnktpnknNMVk X

n
X

n +−−
− +++−−  

                    )}()()()1)(1{( )()(
11

1 tpnNntpnNnkV X
n

X
n −++−−+ −

− ,    

                                                                                                    1,,2,1 −= Nn , 

)}()1{()}()({/)( )(
11

1)(
1

)(
1

1
1

)( tpNkVtNpktMpVkdttdp X
N

X
N

X
N

X
N −

−
−−

− −+−= . 

Using this representation of (11) and the system (12), we obtain (10).  □ 
Remark 1. 0=L  when 1=N . 
Further we assume that 1>N . 
By ⋅  we denote the 1-norm for vectors and matrices. Using the expres-

sions (8)–(10) and the identity 1)()( ≡tp X , one can obtain the estimate 

)exp()0()0()()( )()()()()( τ−≤− YYXYX lpptptp  

                                        ]1)[exp()( )(1)( −τ+ − YY lVll ,                                         (13) 
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where ],0[ τ∈t ,  )()( YY Ll = ,  Ll =   [13]. We shall show that this estimate can 

be improved. 
Theorem  1. The inequality  

τ+−≤− − lVpptptp YXYX 1)()()()( )0()0()()( ,      ],0[ τ∈t  ,              (14) 

holds. 
Proof. Consider the vector  )()()( )()( tptptz YX −= . It follows from (8)–

(10) that this vector satisfies the differential equation 

)()(/)( )(1)( tLpVtzLdttdz XY −+= ,      0≥t , 

and the initial condition )0()0()0( )()( YX ppz −= . Using Cauchy’s formula, we 
obtain 

∫ −+= −
t

XYY duuLputLVztLtz
0

)()(1)( )())(exp()0()exp()( . 

This implies the inequality 

duupLutLVztLtz X
t

YY )())(exp()0()exp()( )(

0

)(1)( ∫ −+≤ − . 

Since )()( tp X  is a probability vector, 1)()( ≡tp X . The matrix ))(exp( )( utL Y − , 

tu ≤ , is the transposed transition probability matrix of the process )(aY , hence its 

columns are probability vectors, whence it follows that 1))(exp( )( =− utL Y . □ 

Remark 2. The function ]1)[exp()( 1 −αα=α − tft , 0>t , is increasing when 
),0( ∞∈α , and tft =α

→α
)(lim

0
, hence )(α< tft . From this it follows that the esti-

mate (14) is more accurate than the estimate (13).  
 

4. The stationary state 
 

The vectors )( Xπ  and )(Yπ  satisfy the equations  

0)()( =π XXL ,                                                                                             (15) 
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0)()( =π YYL .                                                                                            (16) 
The quantities 1

1
−Vk  and 1−k  have the dimension of inverse time; )( XL  and )(YL  

also have this dimension. Since the equations (15) and (16) are homogeneous, they 
possess one and the same set of solutions under any units used. Consequently, 
these equations can be reduced to an equivalent dimensionless form by dividing 
by a unity factor of the same dimension. By replacing one of the equations in (15) 

and (16) with the dimensionless equations 1
0

)( =π∑
=

N

n

X
n  and 1

0

)( =π∑
=

N

n

Y
n , respec-

tively, we obtain systems of equations whose unique solutions are the vectors 
)( Xπ  and )(Yπ . 

Let us introduce the notation: )( X
iL  and )(Y

iL  are the matrices obtained from 
)( XL  and )(YL , respectively, by replacing all the elements of the i th row with 

ones, NSi ∈ ; iL  is the matrix obtained from L  by replacing all the elements of the 
i th row with zeros; ie  is a column vector of dimension 1+N  whose i th compo-
nent is equal to unity, and all other components are equal to zero. 

Theorem  2. The inequality 

i
Y

i
YX LLV 1)(1)()( )( −−≤π−π                                                                 (17) 

holds.  
Proof. The vectors )( Xπ  and )(Yπ  satisfy the equations (15) and (16), re-

spectively, and the conditions =π∑
=

N

n

X
n

0

)( =π∑
=

N

n

Y
n

0

)( 1. Therefore, the equalities 

=π )()( XX
iL  i

YY
i eL =π )()(  hold. It follows from (10) that += )()( Y

i
X

i LL iLV 1− . We 

have )()()(1)( )( YY
i

X
i

Y
i LLVL π=π+ −  and =π−π )( )()()( XYY

iL )(1 X
iLV π− . This 

gives the inequality  

i
YXY

i LVL 1)()()( )( −≤π−π .                                                                    (18) 

Since xLL Y
i

x
Rx

Y
i N

)(

1

11)(
1

inf)(

=
∈

−−
+

=  (it is evident that 1)( )( −Y
iL exists), ≥xL Y

i
)(  

xL Y
i

11)( )(
−− , 1+∈ NRx  [14]. This inequality, together with (18), proves the 

theorem.  □ 
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Let α  be a positive number. Consider the matrices )(
,

Y
iLα  and iL ,α  obtained 

from the matrices )(YLα  and Lα  by replacing all the elements of the i th row with 

ones and zeros, respectively. Multiplying the matrices )( XL  and )(YL  by α  does 
not change the corresponding stationary distributions. We shall determine now 

how the function i
Y

ii LL ,
1)(

, )()( α
−

α=αϕ  depends on α . 

Let us introduce the notation: )(
,
kl

iaα  is the element of 1)(
, )( −

α
Y

iL  located at the 

intersection of the k th row and the l th column, NSlk ∈, ; )(
,
l

iaα  and )(l
ia  are the 

l th columns of 1)(
, )( −

α
Y

iL  and 1)( )( −Y
iL , respectively; )(max l

iilii aLC
≠

= ; )(
,
lk

iSα  and 

)(lk
iS  are the matrices obtained from )(

,
Y

iLα  and )(Y
iL , respectively, by removing the 

l th row and the k th column; )(
,

)(
, det)1( lk

i
kllk

i SA α
+

α −= ; =)(lk
iA )(det)1( lk

i
kl S+− ; 

)(
,, det Y
ii Ld αα = ; )(det Y

ii Ld = . 

Theorem 3. ( ))(,max)( i
iiii aLC α=αϕ . 

Proof. Expand the determinant of the matrix )(
,

Y
iLα  by the elements of the i th 

row: ∑
=

αα =
N

k

ik
ii Ad

0

)(
,, . It is easily seen that )()(

,
ik

i
Nik

i AA α=α . From this equality and 

the equality )(
,

1
,

)(
,

lk
ii

kl
i Ada α

−
αα = , NSlk ∈, , it follows that the elements of the i th col-

umn of the matrix 1)(
, )( −

α
Y

iL  do not depend on α ; consequently, )()(
,

i
i

i
i aa ≡α . 

Consider the matrix )(
,
lk

iSα , NSkl ∈, , il ≠ . One of its rows is a vector of 

ones; let m  be the number of this row. By expanding )(
,det lk
iSα  by the elements of 

the m th row, we obtain =α
)(

,det lk
iS ∑

=
α

N

j

jlk
iD

1

),(
, , where jlk

iD ),(
,α  are the cofactors of 

the elements of the m th row. In a similar manner, by expanding )(det lk
iS  by the 

elements of the m th row, we get =)(det lk
iS ∑

=

N

j

jlk
iD

1

),( .  
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The equalities jlk
i

Njlk
i DD ),(1),(

,
−

α α= , =α id , i
N dα  hold. Consequently, 

)(1)(
, )( lk

ii
kl

i Ada −
α α= , NSlk ∈, , il ≠ . This gives =α

)(
,
l

ia )(1 l
ia−α , il ≠ , and 

1)(
, )( −

α
Y

iL 


α=
≠

− )()(1 ,maxmax i
i

l
iil

aa . Since ii LL α=α, , the theorem follows. 

□   
Corollary. The function )(αϕi  reaches its minimum in the interval ),0( ∞ , 

and ii C=αϕ
>α

)(min
0

, 0>iC . 

Proof. The norms )(l
ia , NSl ∈ , cannot be equal to zero, since in this case 

we would have 0)det( 1)( =−Y
iL , which is impossible. It follows from the definition 

of the matrix L  that 0>iL  if 1>N . These statements, together with Theorem 3, 

prove the corollary.  □ 

As it follows from (17), for every 0>α  

)(1)()( αϕ≤π−π −
i

YX V  

holds. This, together with the corollary to Theorem 3, gives 

i
YX CV 1)()( −≤π−π .                                                                                (19) 

Using (14) and (19), for the processes ),( VMX  и )(aY  with initial conditions (5) 
we obtain the inequality          

( )τ+≤− − lCVtptp i
YX ~)()( 1)()( ,      ],0[ τ∈t ,                                      (20) 

where iC~  is defined for the process ),(~ VMX  in the same manner as iC . 

 
5. Numerical experiments 
 

 In order to investigate the accuracy of the estimates (14), (19) and (20), a 
series of computer experiments was carried out, in which exact values of the ex-

pressions =ν )( rtr t )()()1( )()(1
r

Y
r

X tptpN −+ −  and )()(1)1( YX
st N π−π+=ν −  
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(mean absolute error of approximation of the state probabilities) were compared 
with their estimates obtained by using the inequalities (14), (19) and (20). The 
times rt  were defined as follows. By making the substitution /)()( 1aNktyty −=∆  

)( 11 −+ kak  in (7), we obtain =∆ dttyd /))(( )()( 11 tykak ∆+− −  and =∆ )(ty  

))(exp()0( 11 tkaky −+−∆ . Define =rt )/(1 11 −+ kak . Thus, rt  is the relaxation time 
for )(ty∆  which tends to )/( 111 −+ kakaNk  as ∞→t . 

We used the following parameters: 1k , 1−k , N , MNk 1−= , MVa 1−= , i , 

0j . We put 11
~1.1 kk = , 11

~2.1 −− = kk . For the same values of 1k , 1−k , N , k  and a , 
we considered both types of initial conditions ((4) with initial state 0j  and (5) with 

rate constants 1
~k , 1

~
−k ). Parameter values for the computer experiments are given 

in Table 1. 
For each of the ten sets of parameter values, we calculated rt , 1E , the esti-

mate of )( rtr tν  for the initial conditions (4) (the inequality (14)), 2E , the estimate 
of )( rtr tν  for the initial conditions (5) (the inequality (20)), 3E , the estimate of 

stν  (the inequality (19)), and their ratios, 1r , 2r , 3r , to the corresponding exact 
values. For the computations, the program package MATLAB was used. 

It is seen from the results of the experiments (Table 2) that, when N  is 
small, the inequalities (14), (19) and (20) give estimates which are of the same or-
der as the corresponding exact values. This is true for (19) and (20), if the quanti-

ties ak1  and 1−k , ak1
~  and 1

~
−k  are of the same order. The influence of the magni-

tude of the ratio 11 / −kak  on the accuracy of the estimate (14) in the case of initial 
conditions (4) depends on 0j . As N  increases, the accuracy of the estimates (19) 
and (20) decreases faster than that of (14). The accuracy of the estimates (19) and 
(20) depends on i , the estimates being more accurate if i  is close to 2/)1( +N . 
 
6. Conclusion 

 
Using the inequalities (14) and (17), one can show that the error of ap-

proximation of the probabilities  

,)({ 11
),(

t
VM itXP = ,,)( 22

),(
t

VM itX = })(),(
mtm

VM itX = ,  
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where 0≥kt , Nt Si k ∈ , mk ,,2,1= , by the corresponding probabilities for the 

process )(aY  is of order )( 1−VO  as ∞→VM , , =− MV 1 a . Consequently, the fi-

nite-dimensional distributions of the processes ),( 0VNX , ,,),1( 1VNX +  

,,),( nVnNX + where =+− )(1 nNVn a , =n ,,1,0  weakly converge to those of 

the process )(aY . 

The limit ∞→VM , , =− MV 1 const, can be called one-species thermody-

namic limit by analogy with the thermodynamic limit (the volume and numbers of 
particles of all species tend to infinity, the concentrations stay constant [15]). The 
thermodynamic limit gives the deterministic rate equations, whereas the one-
species thermodynamic limit gives the limiting stochastic process. In the case of 
the reaction (1), the use of the limiting process simplifies the model substantially. 
This suggests that considering such limits will be useful for analysis of stochastic 
models of more complex reacting particle systems. 
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T a b l e  1 
 
Parameter values for the experiments 
 

No. 1k  1−k  N k a i j0 

1 0.9 0.5 3 30 0.3333 2 1 

2 0.9 0.5 3 300 0.3333 2 1 

3 0.9 0.05 3 30 0.3333 2 3 

4 0.9 0.005 3 30 0.3333 2 1 

5 0.009 0.5 3 30 0.3333 2 2 

6 0.9 0.5 3 30 0.003 2 0 

7 0.9 0.5 8 30 0.3333 4 4 

8 0.9 0.5 20 300 0.3333 9 14 

9 0.9 0.5 20 300 0.3333 2 2 

10 0.9 0.5 20 300 0.3333 18 18 
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T a b l e  2 
 

Results of the experiments 
 

No. tr E1 r1 E2 r2 E3 r3 

1 1.2500 0.0042 3.1900 0.0083 5.0522 0.0039 2.4335 

2 1.2500 0.0004 3.1953 0.0008 5.0617 0.0004 2.4376 

3 2.8574 0.0095 10.7593 0.0186 6.8272 0.0090 3.1997 

4 3.2790 0.0109 2.7437 0.0217 43.7594 0.0108 20.4005 

5 1.9881 0.0001 3.3927 0.0002 262.537 0.0001 166.489 

6 1.9893 0.0001 311.673 0.0002 291.089 0.0001 184.988 

7 1.2500 0.0056 5.5003 0.0184 12.9264 0.0123 8.9853 

8 1.2500 0.0006 8.7886 0.0024 23.7910 0.0017 17.3794 

9 1.2500 0.0006 12.1351 0.0032 31.7705 0.0024 24.7988 

10 1.2500 0.0006 10.4912 0.0032 31.7605 0.0025 25.2021 

 
 
 
 

 


