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Abstract

We consider the chemical reaction 4+ B <> AB taking place in a compartment of
volume V', which contains M and N, M = N, particles of species 4 and B,
free or bound. We investigate two stochastic models of the reaction — the quadratic
and the linear models. These models are homogeneous birth and death processes

with state space {0, 1,---, N}. We derive inequalities which allow to estimate the

accuracy of approximation of the state probability vectors, both transient and sta-

tionary, of the quadratic model by the state probability vectors of the linear model
as M, V — oo, VM =const. We show that, if NV is small, these inequalities give

estimates which are of the same order as exact values of the norms of differences

of the corresponding state probability vectors.
1. Introduction

We study stochastic mesoscopic models of the reversible chemical reaction
of formation of binary complex

k
A+B =—— AB. (1)
ket

Mesoscopic models are used in cases when the number of reacting particles is
small, and random deviations of concentrations of the reacting particles from the
corresponding mean values should be taken into account [1-5]. Intracellular vesi-

cles and microbiosensors are examples of systems that contain a small number of



particles [6, 7]. The interaction of regulatory proteins with their target sites in a
bacterial cell can also be formalized by the reaction (1), and, owing to smallness
of the number of interacting particles (units, tens), the deviations of their
concentrations from the mean values can be large [8, 9].

The deterministic rate equation for the reaction (1) has the form
dn(t)/dt =ky(a—n@))(b—n(t))—k_n(t), 120, (2)

where k; and k_; are the rate constants for the forward and backward reactions in

(1), n(¢) 1s the concentration of species AB, a and b are the overall concentra-
tions of the free and bound forms of species 4 and B, respectively [10]. It is as-
sumed that, for all >0, the temperature of the chemical system equals some
constant 7' throughout the volume of the system.

If b << a, then at all times n(¢) << a, therefore, the changes in the concen-
tration of free A particles can be neglected. In this case, the forward reaction in

(1) is a pseudo-first order reaction with rate constant k,a, and its rate equation has

the form
dn(t)/dt = kja(b—n(t))—k_n(?). (3)

Such an approximation is frequently used by practitioners [1].
We denote by M and N the numbers of 4 and B particles (free as well as
bound) in a compartment of volume V. We assume that M = N, and that the

changes in the number of 4B particles can be described by homogeneous birth
and death processes X" = x5 t>01 and Y9 =¥ D), 20,
a=V"'M, with state space Sy =1{0,1,---, N}. The processes XMV apd y@
are the stochastic models of the reaction (1) that correspond to the rate equations
(2) and (3) (we shall call these models the quadratic model and the linear model,

respectively). In this paper, expressions are obtained that allow to estimate the ac-

curacy of approximation of the state probability vectors, both transient and sta-

tionary, of the process XM by those of the process Y as M,V — oo,

V="M =const.



The process Y @ is a special case of the Prendiville process. For many
characteristics of this process (transition probabilities, mathematical expectation,
variance), explicit formulae exist [11]. Consequently, by using the linear model
instead of the quadratic model, one can substantially simplify the study of the con-

sidered chemical system.
2. The quadratic and the linear models

The quadratic model of the reaction (1) is similar to the stochastic model of

the reaction A+ B <> C considered in [12]. The birth rates of the processes
XYY and Y@ are defined by AN =k V' (M —n)(N-n) and A =

EIX) ZMEIY) =k_1n, ne SN' AS lt iS

kja(N —n), and the death rates are given by 1
seen from the expressions for the birth rates, Ay = A") when M >> N, and in
this case the linear model can be used instead of the quadratic model. Let us intro-
duce the notation: p\()=PXMy=n}, pPV)=PT 1)=n!,
p(X)(t) = (p,SX)(t)), p(Y)(t) = (p,gY)(t)) ,n=0,1,---, N. We consider the follow-
ing two types of initial distributions for the processes X ") and Y®:

1. There exists such j,e S, that p%( )(O) =1; in this case p% )(O)=1,

@)= p0(0)=0, ne Sy, n# j; 4)

2. p(X)(O) = 7(X) , p(Y)(O) — ﬁ(Y), (5)
where &) and 7" are the stationary distributions of the birth and death proc-
esses XM and 7@ with state space Sy, birth rates AX) =

l;lV_l(M —n)(N —n), Xg) = l?la(N—n) and death rates N,(iX) = H,SY) = l;_ln,
ne Sy . The processes X™:") and ¥“) in the stationary state describe the evolu-
tion of the considered chemical system in the state of chemical equilibrium at a
temperature 7;. It is assumed that the reaction (1) 1s exothermic, and that l?l, %_1
satisfy the inequality l?l / l:_l > ky /k_;. This inequality implies that 7, <T', since

the chemical equilibrium shifts to formation of free 4 and B particles as the tem-
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perature of the system increases. It is also assumed that when 7 < 0, the tempera-
ture of the system equals 7;,, and when 7 =0, it is equal to 7', that is at time =0,
a “temperature jump” occurred in the system [10]. The quantities l?l and %_1 are

the rate constants for the reaction (1) before the temperature jump. In this case, it

can be assumed that for # > 0, the evolution of the system is described by the proc-
esses X M-") and Y® with the initial distributions (5).

Let us introduce the notation: thiX) =t1i_>m p,gX)(t), nfqy ) =tli_>m p,gY )(t),

o) = (ngX)) , nd) = (n;Y)), n=0,1,---, N. The probabilities n;X) can be found

using the formulae [12]:

') = nlOR MIN(k_ )" nt (M —n)!(N =)',

n=12,---,N; TE%X) can be obtained from the condition nfiX) =1. The probabili-

(¥)

ties T,

are given by the expressions [11]:

N
n;”:( }kla)"kNl"”(kla+k1)"N, neSy.
n

Let us establish a correspondence between the stochastic and deterministic

models of the reaction (1). The expectation, x(¢), of the process X (M.V) satisfies

the differential equation

N
dx(t)/de="Y NV —u1p @), =0,
n=0

Using the expressions for the birth and death rates of the process X MY) we get

dx(f)/ dt = k)V (M = x(£))(N — x(¢)) + var X M) ()] = k_x(¢) .

Consequently, the expectation, c(¢), of the process C M.V) =t xM.7) satisfies

the differential equation

de(t)/ dt = ky[(a —c(£))(b - c(£)) + var CMP)(6)] = k_, (7). (6)
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If (a—c(t))(b—c(t)) >> var C(M’V)(t), then, neglecting the variance
VarC(M’V)(t) in (6), we arrive at the equation (2). It can be shown that if
M, N, Vo in such a way that V_1M=a, V_lsz, and if

lim C™:")(0)=n,, then

M,N,V—c
lim P{sup Cc1)(p) —n(t)‘ > a} =0, re[0, 1],
M, N,V —oo <1

for all € >0, where n(?) is the solution of the equation (2) for the initial condition

n(0) = n, [12].

It can also be easily shown that the expectation, y(¢), of the process Y (@)

satisfies the equation
dy(t)/dt = ka(N - y(0) ~k_(t),  20. (7)

Dividing this equation by V', we obtain the equation (3).

3. The transient

The vectors p(X )(t) and p(Y)(t) , t 20, satisfy the differential equations

dp' ™ (0)/dt = L0 p' ™ () ()
and

dp(0)/dt = LD p™ (o), ©)

where the matrices LX) and L are the transposed transition rate matrices of the
processes X M:") and Y@

Proposition. For the matrices L9 1Y) the equality
[ =10 4yl (10)
holds, where the matrix L does not depend on M, V .
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Proof. The systems (8) and (9) are of the form

dp$ (1)1 dt = =k " MNp$ (0 + k_ p™ (1),
dpt 0y dt =k (M —n+1)(N —n+1)p'X) (1)
— [k (M = n)(N =) +k_n]p™ (1)
+h_ (n+DpX (), n=12,---N-1,
dpO () /dt =k (M = N+ 1) po () - k_ Np§P (o), (11)

and

dp§(0)/dt = ~kiaNp( () + k1 p{" (1),
Aps)(0) i = k(N =+ Dp (1) =N =) +knlps (1)

+hk_ (n+1)pM (1), n=12,--,N—1,
dp\(t)/ dt = kap\), (1) = k_\Np(¢). (12)

Write (11) in the following form:

dps(6)/ di = {=k " MNpG () +k_ pi P (1)},
dpt(t)/dt = {kV ' M(N —n+1)pt*) (1)
— [V ' M(N =n)+k_n1pt @)+ k_ (n+1)p'Y) (1))
+V ey {0 =m)(N =n+1)p ) (@) + n(N =n)piP (1)},
n=1,2,--,N-1,
dp (0) ] di = {kV ™ Mp 2, (1) = ko Npy (6} +V Tk (0= N p2h (0}
Using this representation of (11) and the system (12), we obtain (10). O

Remark 1. L=0 when N =1.
Further we assume that N > 1.

By || : || we denote the 1-norm for vectors and matrices. Using the expres-

sions (8)—(10) and the identity H p(X )(t)H =1, one can obtain the estimate

P 0=p" 0| <[p O pT O expt™)

+10 DY) exp(lM1) -1, (13)



where 7€ [0, T], 1O = HL(Y)H, [ = ||L|| [13]. We shall show that this estimate can

be improved.
Theorem 1. The inequality

PP 0-p"0| <[P0 -p" O+, refo, 1, (14)

holds.

Proof. Consider the vector z(¢) = p(X)(t)— p(Y)(t). It follows from (8)—
(10) that this vector satisfies the differential equation

dz(t)/dt = [Vz()+V 'Lp® (1), >0,

and the initial condition z(0) = p(X )(O)— p(Y )(O). Using Cauchy’s formula, we

obtain
t
2(t) = exp(L)2(0) + V! [ exp(LY (t = ) Lp™® (w)elu .
0
This implies the inequality

|20 < Jexp(£™0)z(0)]| + V_lj“exp(L(Y) (e =)L) @)l
0

Since p(X )(t) is a probability vector, p(X )(t)H =1. The matrix exp(L(Y )(t —u)),

u < t, 1s the transposed transition probability matrix of the process Y (@ hence its

=1.0

columns are probability vectors, whence it follows that Hexp(L(Y) (t— u))‘

Remark 2. The function f,(o) = oc_l[exp(oct) —1], t >0, is increasing when
o€ (0,), and lim f,(0t) =t, hence t < f,(ot). From this it follows that the esti-
a—0

mate (14) is more accurate than the estimate (13).

4. The stationary state

(X

The vectors ©) and " satisfy the equations

[ =, (15)



[ =0, (16)
The quantities k7' and k_, have the dimension of inverse time; L and V)

also have this dimension. Since the equations (15) and (16) are homogeneous, they
possess one and the same set of solutions under any units used. Consequently,
these equations can be reduced to an equivalent dimensionless form by dividing
by a unity factor of the same dimension. By replacing one of the equations in (15)

N N
and (16) with the dimensionless equations anf() =1 and anf) =1, respec-

}1:0 n:o
tively, we obtain systems of equations whose unique solutions are the vectors

% and ).

Let us introduce the notation: LE-X) and LEY) are the matrices obtained from
L' and IV respectively, by replacing all the elements of the ith row with
ones, i € Sy ; L; is the matrix obtained from L by replacing all the elements of the
i th row with zeros; e; is a column vector of dimension N +1 whose 7 th compo-

nent is equal to unity, and all other components are equal to zero.
Theorem 2. The inequality

0wy <m
holds.
Proof. The vectors %) and ¥ satisfy the equations (15) and (16), re-

N N
spectively, and the conditions anf( ) = anf ) =1. Therefore, the equalities
n=0 n=0
LE-X)R(X) = [ =¢. hold. It follows from (10) that L\*) = L") + 7~ We
have (L +v7'L)n™ =[x and (@Y - gy =y~ L2 This

gives the inequality

Y) (X Y -1
1@ —x < L. (18)
-1
Since H(LEY))”H = inf LE.Y)xH (it is evident that (LE-Y))_Iexists), Lgy)xHZ
xeRN+1
=1

, xe R¥*! [14]. This inequality, together with (18), proves the

ey 1

theorem. O



Let o be a positive number. Consider the matrices La - and L, ; obtained

1 o, 1
from the matrices aZ'’) and oL by replacing all the elements of the i th row with
ones and zeros, respectively. Multiplying the matrices L) and 1) by o does
not change the corresponding stationary distributions. We shall determine now

how the function @; (o) = H(Lg})qHHL% ;| depends on o.

(KT)

Let us introduce the notation: a, ; is the element of (LEXY 1) located at the

o,
intersection of the & th row and the /th column, k,/e Sy; a fj,l. and a(l) are the
[ th columns of (L%Z?)‘l and (L"), respectively; C; =L, ||max S&”? and

S; (%) are the matrices obtained from L(ayz- and L( ) , respectively, by removing the

/th row and the kth column; A&{ki) = (—=1)"** det SUX); Al.(”‘) = (=1)"** det Si(lk);

o,1 ?

dy ;=detL); d; =det {").

o,z

al?

)

Proof. Expand the determinant of the matrix L( ) - by the elements of the i th

Theorem 3. ¢;(0) = maX(C,-,

row: ZA(’k ). It is easily seen that A(’k ) =¥ 4% From this equality and

O( i

the equality a(kl) dL A Kk lesS v » 1t follows that the elements of the i th col-

o, i“to, i 0

umn of the matrix (L(Y)) do not depend on o ; consequently, |a

(Ik)

Consider the matrix Se.i» LkE Sy, [ #1i. One of its rows is a vector of

ones; let m be the number of this row. By expanding det S &l’kl-) by the elements of

N .
the mth row, we obtain det S&{kl-) = ZD&{]?’J , where D&{ki)’] are the cofactors of
j=1

the elements of the mth row. In a similar manner, by expanding det Sl.(”‘ ) by the

N
elements of the m th row, we get det Sl-(lk) = ZDI.(Zk)’] .
j=1



The equalities D&lﬁ)’j = OLN_IDI.(lk)’j , do i = od; hold. Consequently,

(kl) = (o, )_IA(lk), k,le Sy, [#i. This gives ‘a((xl,)i = o YlaV , [ #1, and
H(L(Y) H max(oc "max|a”|, |a" ) Since HLOH =
1#i ’
O

Corollary. The function @,(o) reaches its minimum in the interval (0, o),

and min@; (o)) =C;, C; >0.
a>0

a0,

Proof. The norms v » cannot be equal to zero, since in this case

we would have det(LEY) )_1 = (0, which is impossible. It follows from the definition

of the matrix L that HLZH > (0 if N >1. These statements, together with Theorem 3,

prove the corollary. O

As it follows from (17), for every o> 0
Hrc(X) - n(Y)H <V, (o)
holds. This, together with the corollary to Theorem 3, gives

Hnm - an <y-lc.. (19)

Using (14) and (19), for the processes X M.Y) g Y@ with initial conditions )

we obtain the inequality

PP 0-p" | <y (C+R), e, 1, (20)
where C; is defined for the process X (M-7) in the same manner as C,.
5. Numerical experiments

In order to investigate the accuracy of the estimates (14), (19) and (20), a

series of computer experiments was carried out, in which exact values of the ex-

pressions v,,(t,) = (N +1)"'[p(¢,) = p(¢,)] and v, =V +1) |2 -n ]
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(mean absolute error of approximation of the state probabilities) were compared
with their estimates obtained by using the inequalities (14), (19) and (20). The
times ¢, were defined as follows. By making the substitution Ay(¢) = y(¢) — Nkya/

(kja+k_) mm (7), we obtain d(Ay(?))/dt=—(kja+k_)Ay(t) and Ay(t)=
Ay(0)exp(—(kja +k_y)t). Define ¢, =1/(kja +k_,). Thus, ¢, is the relaxation time
for Ay(¢) which tends to Nkya /(kja+k_;) as t — oo.

We used the following parameters: &k, k_;, N, k= N_IM, a= V_IM, i,
Jo- Weput k) = 1.11;1, k_|= 1.2%_1. For the same values of &k, k_;, N, k and a,

we considered both types of initial conditions ((4) with initial state j, and (5) with

rate constants k;, k_;). Parameter values for the computer experiments are given

in Table 1.

For each of the ten sets of parameter values, we calculated ¢,, E,, the esti-
mate of v,.(¢,) for the initial conditions (4) (the inequality (14)), E,, the estimate
of v,.(¢,) for the initial conditions (5) (the inequality (20)), E;, the estimate of
v, (the inequality (19)), and their ratios, #, », r;, to the corresponding exact

values. For the computations, the program package MATLAB was used.

It is seen from the results of the experiments (Table 2) that, when N is
small, the inequalities (14), (19) and (20) give estimates which are of the same or-
der as the corresponding exact values. This is true for (19) and (20), if the quanti-

ties kja and k_,, l;la and ;_1 are of the same order. The influence of the magni-
tude of the ratio k;a/k_; on the accuracy of the estimate (14) in the case of initial
conditions (4) depends on j,. As N increases, the accuracy of the estimates (19)

and (20) decreases faster than that of (14). The accuracy of the estimates (19) and
(20) depends on i, the estimates being more accurate if i is close to (N +1)/2.

6. Conclusion

Using the inequalities (14) and (17), one can show that the error of ap-

proximation of the probabilities

P{X(M’V)(tl) Zitl ’ X(M’V)(Q) =il‘2 ERI X(M’V)(tm) :itm}’
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where #, 20, i, €Sy, k=1,2,---,m, by the corresponding probabilities for the

process Y@ s of order O(V_l) as M,V e, VM =a. Consequently, the fi-

nite-dimensional distributions of the processes X (N ’VO), xW H’Vl),---

X(N+”’V”),---,where Vn_l(N+n) =a, n=0,1,---, weakly converge to those of
the process ¥ (4.
The limit M,V — e, V" 'M =const, can be called one-species thermody-

namic limit by analogy with the thermodynamic limit (the volume and numbers of
particles of all species tend to infinity, the concentrations stay constant [15]). The
thermodynamic limit gives the deterministic rate equations, whereas the one-
species thermodynamic limit gives the limiting stochastic process. In the case of
the reaction (1), the use of the limiting process simplifies the model substantially.
This suggests that considering such limits will be useful for analysis of stochastic

models of more complex reacting particle systems.
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Parameter values for the experiments

Table 1

No. k, k_, N k a i Jo
1 0.9 0.5 3 30 0.3333 2 1
2 0.9 0.5 3 300 0.3333 2 1
3 0.9 0.05 3 30 0.3333 2 3
4 0.9 0.005 3 30 0.3333 2 1
5 0.009 0.5 3 30 0.3333 2 2
6 0.9 0.5 3 30 0.003 2 0
7 0.9 0.5 8 30 0.3333 4 4
8 0.9 0.5 20 300 0.3333 9 14
9 0.9 0.5 20 300 0.3333 2 2
10 0.9 0.5 20 300 0.3333 18 18

14




Results of the experiments

Table 2

No. t, E; 7 E, ) E; r3

1 1.2500 | 0.0042 | 3.1900 | 0.0083 | 5.0522 | 0.0039 | 2.4335
2 1.2500 | 0.0004 | 3.1953 | 0.0008 | 5.0617 | 0.0004 | 2.4376
3 2.8574 | 0.0095 | 10.7593 | 0.0186 | 6.8272 | 0.0090 | 3.1997
4 3.2790 | 0.0109 | 2.7437 | 0.0217 | 43.7594 | 0.0108 | 20.4005
5 1.9881 | 0.0001 | 3.3927 | 0.0002 | 262.537 | 0.0001 | 166.489
6 1.9893 | 0.0001 | 311.673 | 0.0002 | 291.089 | 0.0001 | 184.988
7 1.2500 | 0.0056 | 5.5003 | 0.0184 | 12.9264 | 0.0123 | 8.9853
8 1.2500 | 0.0006 | 8.7886 | 0.0024 | 23.7910 | 0.0017 | 17.3794
9 1.2500 | 0.0006 | 12.1351 | 0.0032 | 31.7705 | 0.0024 | 24.7988
10 1.2500 | 0.0006 | 10.4912 | 0.0032 | 31.7605 | 0.0025 | 25.2021
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