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Abstract

The TKF91 model of biological sequence evolution describes changes in the sequence length via an infi-
nite state-space birth—death process, which we term the TKF91-BD process. The TKF91 model assumes
that, for any pair of modern sequences, the ancestral sequence has equilibrium length distribution, an
assumption whose validity has not been rigorously investigated. We obtain explicit upper and lower bounds
on the rate of convergence to equilibrium for the distribution of the TKF91-BD process. We show that the
rate of convergence of the TKF91-BD process for protein sequences with parameter values inferred from
sequence data on o and B globins is too low to guarantee convergence to equilibrium on a reasonable time-
scale. For the analyzed nucleotide sequences, the convergence is faster, but the equilibrium sequence length
is unrealistically small. The Jukes—Cantor model of nucleotide substitutions can converge considerably fas-
ter than the length evolution model for both amino acid and nucleotide sequences, while the speed of con-
vergence for the Kimura model is close to that for the TKF91-BD process describing nucleotide sequences.
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1. Introduction

In recent years, stochastic modeling of evolutionary changes in the length of biomolecular se-
quences was given considerable attention [1-8]. The proposed models take into account randomly
occurring insertion and deletion events; if combined with an appropriate nucleotide or amino acid
substitution models, they provide complete probabilistic description of sequence evolution. Not
only do such models enhance our understanding of the evolutionary process at a quantitative le-
vel, but they also serve practical purposes such as providing a solid evolutionary basis for pairwise
and multiple sequence alignments [1,4,9—-12], estimating rates of point indel (insertion/deletion)
mutations [1,2,10], and reconstructing phylogenies [5]. Originally stochastic indel models were de-
signed to describe the evolution of DNA [7,8] and protein sequences [1,13]; recently they were ex-
tended to describe the evolution of RNA structure [14].

The two main types of mathematical formalism used to model indels are continuous-time Mar-
kov processes and hidden Markov models (HMMs). The major modeling tool to represent se-
quences with indels has been a special case of Markov chain termed birth—death process.
Markov chains of this type possess a number of useful properties, and are well studied. However,
in the case of infinite state space certain important properties of birth—death processes are quite
difficult to analyze. In this paper we investigate one of such properties, the rate of convergence to
equilibrium (stationary distribution). Our primary goal is to obtain estimates on the rate of con-
vergence to equilibrium for the well-known TKF91 model, which underlies numerous approaches
to statistical sequence alignment and evolutionary modeling [1,2,7-9,11-16]. Originally the model
was formulated for nucleotide sequences [7]; later it was used to describe the evolution of proteins
as well [1].

The assumption that sequence divergence occurs within the stationary distribution is very com-
mon in quantitative modeling of molecular evolution [17]. It is an important postulate in modeling
indels under the TKF91 model, stating that the length distribution of the sequences at the time of
divergence is the stationary distribution of the appropriately constructed birth—death process
[1,2,7,8]. Indeed, under the assumptions of the TKF91 model, the likelihood of a pair of modern
sequences S; and S, originated from the ancestral sequence, S,, ¢ years ago, is written as

P(S),82,8) = Y P(Sy — S1,0)P(Sy — S2, 1)P(S4,00).
Sa

Here P(S, — S, 1), i = 1,2, is the probability of transition from S, to S; in time ¢, and P(S,,00) is
the equilibrium probability of sequence S,. P(S,,0) is equal to the product of the equilibrium
probability that S, has the given length and the equilibrium probability that a sequence of that
length consists of the specific nucleotides which constitute S,. As we see, the equilibrium assump-
tion plays a central role in the formulation of the TKF91 model. While such an assumption
greatly simplifies the analysis, its validity requires additional investigation. This question moti-
vated the development of the convergence rate estimation method described in this paper.

We obtain rigorous upper and lower bounds on the rate of convergence of the birth-death pro-
cess in the TKF91 model, and compare that rate to the rate of convergence for the Jukes—Cantor
and Kimura substitution models, for which the equilibrium assumption is standard [17]. In addi-
tion to establishing rigorous mathematical results, we analyze recent estimates of indel rates and
comment on the validity of the equilibrium hypothesis for the TKF91 in the light of the available
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data. Our computations show that, when the TKF91 model is applied to protein sequences, con-
vergence to equilibrium occurs on biologically unreasonable time scales. For nucleotide se-
quences, convergence is faster; however, the equilibrium sequence length turns out to be too
small to be biologically realistic. For the substitution models, especially for the Jukes—Cantor
model, convergence appears to be fast enough so that the equilibrium hypothesis can be used
as a realistic assumption.

2. Birth—death processes and the TKF91 indel model

The TKF91 model, or the “links” model, introduced by Thorne, Kishino, and Felsenstein in
1991 [7], comprises a substitution model and an indel model; these models can be considered inde-
pendently of each other. Here we concentrate on the indel part of the TKF91 model, which de-
scribes the evolution of the sequence length. The length evolution of the sequence (consisting of
nucleotides or amino acids) is represented in the TKF91 model by an infinite state-space birth—
death process (due to the special form of the expression for the birth rates, the process is called
birth—death process with immigration in [1]). We refer to this process as the TKF91-BD process.
To proceed, we need a few definitions and statements concerning birth—death processes in general.

Being a special case of continuous-time Markov chain, a birth—death process X = { X(¢),t = 0}
on a state space Sy = {0,1, ..., N} (N < oo) can be defined by the transition rate matrix Q = (g;),
i,j € Sy, and the initial probabilities p{0) = P{X(0) =i}, i € Sy (for a background on continuous-
time Markov chains and birth—death processes, see [18]). The matrix Q of a birth-death process
has a special structure: for every i € Sy, q;;+1 = 0, ¢;;_1 = 0, and all the other ¢; with i # j are
equal to 0. Therefore, a transition from state i can occur only to the states i+ 1 ori—1,i€ Sy.
For the diagonal entries, we have g; = —(¢;+1 + ¢i;—1). Thus, a birth—death process is determined
by the sets of up-transition (birth) rates {4;}, 4; = ¢;;+1, and down-transition (death) rates {u},
Ui =qii1, i € Sy. We assume that uo =0, and 4y =0 if N <oo. All the other birth and death
rates, maybe except 4, are positive real numbers. There can be broader definitions of birth-death
process, but here we restrict ourselves to the one given above.

For a given birth—death processes, one of the important questions is whether it is possible to
uniquely define the transition probabilities p;(f) = P{X(t) = j|X(0) = i}, i,j € Sn. A sufficient con-
dition for the uniqueness of the transition probabilities is the bound

sup(4; + 1;) < 00 (1)
ieSy
(see Proposition 2.9 in [18], Chapter 2). Thus, all birth—death processes on a finite state space have
uniquely defined transition probabilities.

Another important question concerning the behavior of birth—death processes is whether there

exists a unique stationary probability distribution = = {=;}, such that

Z nipij(t) =Ty

ieSn

for all 1 = 0, j € Sy. A stationary distribution always exists for birth—death processes on finite
state spaces. If the distribution 7 exists, then
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Fig. 1. The “links” model representation for a sequence consisting of 4 monomers (showed as circles). The links,
including the leftmost “immortal” link, are shown by squares.

|pij(t) —m| =0 ast— o0

for all i,j € Sy [18]. This is the type of convergence studied in this paper.

We now turn to the TKF91-BD model of sequence length. First, we informally describe the mod-
el in terms of the possible indel events in a sequence. A sequence can be represented as a set of
monomers and connecting links; in Fig. 1, we show such a representation for a sequence of length
4. Monomers are shown as circles, while links are shown as squares. The leftmost link is the
“immortal” link. Each monomer is associated with the link to the right, and an evolutionary event
is either a deletion of such a monomer-link pair or an insertion of a similar pair to the right of an
existing link. Note that, in such a setting, the immortal link can never be deleted. The intensity of
the insertion process per link is 4, and the intensity of the deletion process per monomer is u. Thus,
for a sequence of length n, the overall insertion rate is A(n + 1), and the overall deletion rate is un.

The TKF91-BD process is a birth—death process on the infinite state space, with birth and death
rates ;= A(i + 1) and u; = i, i € S,.. The states of the process correspond to different possible
values of the sequence length. Applying Theorem 2.2 of ([18], Chapter 3), it is easy to prove that
the transition probabilities for the TKF91 process are uniquely defined. As follows from Theorem
4.5 of ([18], Chapter 5), if 0 < A4 < u, a unique stationary distribution exists. It has the form (also
given in [1])

7 = <1—ﬁ>(&>, ics..
w) \u

If 0 < u < 4, there is no stationary distribution; the sequence length drifts to infinity as ¢ — oc.
Thus, we always assume A1 < u. Another important characteristic of the TKF91-BD process is
the existence of an explicit expression for the mathematical expectation [1]

E(i,t) := ijpij(t) =i+ (.U f Fh i) (1 —e (=1, (2)

The expression (2) implies that, for all i € S, the stationary value of the mathematical expecta-
tion is
E(0o) = )
o0) = =
We will use (2) and (3) in the following sections.

3. Convergence bounds for the TKF91-BD process

To estimate the distance between the probability distributions p = (p;) and p = (p;) on Sy, it
will be convenient to use the metric |-/, , which is frequently used in the studies of convergence
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and stability properties of infinite state-space birth—death processes [19-22]. This metric is defined
with respect to a sequence of positive real numbers {d;}, i € Sy, as follows:

N
lp _13”11,) = Zgi‘pi - pils
i—1

where

In the general case, the /| p-distance between some distributions on S, may be infinite, but in all
the situations that we consider the distance is finite. In what follows, we use exclusively the /;p
metric defined by d; =1, i € Sy; we denote this metric by || - || (without a subscript). Our major
goal is to obtain upper and lower bounds on the quantity ||p(,?) — =||, where p(i,?) is the distri-
bution of the process at time ¢ if the process started in state i at time 0 (i € S, ¢t = 0).

In this work, we draw heavily upon the method of bounding the rate of convergence to sta-
tionarity for birth—death processes developed by Zeifman and coauthors [20-22]. Theorem 1 be-
low is a direct consequence of Zeifman’s results [22]. For X, assume that the condition (1) is
satisfied. Let p(7) = (p{1)) and p(¢) = (p;(¢)), i € S, be the state probability vectors for X, corre-
sponding to the initial distributions p(0) and p(0). Consider a sequence {o;}, i € Sy_1, of real num-
bers defined by

Cxi:ii+ﬂi+l_)“i+l_ui7 i:Oalv"'aN_la (4)
and put
o = inf o. (5)

Theorem 1. If « >0, then for any p(0) and p(0) satisfying ||p(0) — p(0)|| < oo, the following
inequality holds:

lp(2) = p()]| < e[lp(0) = p(O)[I, ¢ > 0. (6)

Proof. Follows from Theorem 3.1 of [22] and the Remark following its proof. [

Notably, the condition (1), necessary to prove the bound (6), is not satisfied for certain practi-
cally important birth—death processes with infinite state space, including the TKF91-BD process;
and Zeifman’s theory cannot be directly applied. Here we show that in some cases (6) can be ex-
tended to processes for which (1) does not hold. We do so by proving a convergence bound for the
TKF91-BD process.

Theorem 2. Let X be the TKF91-BD process. For i,j € So, (i # J)

(G, 0) = GOl < [lp(i,0) = p(j,0)lle” " = (i + jle ™, 1> 0. (7)
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Proof. Fix arbitrary iy, jo € So (i # jo), and select a positive integer K > max(iy, jo). Consider the
family {X™}, M=K,K+ 1, ..., of birth-death processes on S,,, such that X has birth rates
{2} and death rates {¢} defined as follows:

/1?4 = i, Hf—u =l 1€ Sy; }% =0, M% = Uy-

We first apply Zeifman’s bound (6) to the processes X as follows. Denote
P (1) = P{X"(t) = jlX™(0) = i}, i,j € Sar. For any process X", by (4),

G=pu—4 i=01,...,M—-2,

oy = AM +

therefore, by (5), o = u — 4. Also, notice that ||p*(i,0) — p*(j,0)|| = i + j, where p™(k,?) is de-
fined for X in a similar way to p(k, ). Thus, for each M, the inequality (6) gives

K M
D ilPh(0) = P (O] < Y ilp(n) = pr(0)] < e Z i1, (0) = ;i (0)] = (io + jo)e "
i=1 i=1

for convenience, we rewrite this as follows:

leff, = P(O] < (o + jo)e " (8)

Consider now the family of processes {X}, where X is a birth—death process on S,, whose
birth and death rates coincide with those of X for the transitions inside S,,, and are equal to 0
for all other transitions. Thus, for X, S,, is a closed irreducible set of states. Therefore, the tran-
sition probabilities corresponding to the transitions inside Sy, coincide for XM and X™; all other
transition probablhtles for XM are 0 for all 7> 0. We denote the birth and death rates for XM by
) and i, respectively. Obviously, )M — J; and " — 1, as M — oo. As the condition Eq. (1)
holds for all XM their transition probablhtles are uniquely defined. Since all X, as well as X, have
uniquely deﬁned transition probabilities, the sequence of processes {X*} and the process X satisfy
the conditions of Theorem 1 of Kurtz [23]. Hence p}/ (1) — p;(¢) as M — oo for all i,j € S, 1> 0.
Passing to the limit as M — oo in Eq. (8), we thus obtain

K
D ilpi(t) = P (0] < (o + jo)e . )

i=1
Since (9) holds for every K such that K> max(iy, o), passing to the limit as K — oo in (9), we get

Ip(io, ) — (g, )] < (io + jo)e “".
As our choice of iy and j, was arbitrary, the theorem follows. [

Theorem 3. If X is the TKF91-BD process, then, for all i € S,

A .
(i)l < (42 e (10)
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Proof. We have

Ip(i,t) — nl| = ZJIP,, -l = Z] anp,, Zn’kpk,
Jj=

<37 mlpy(e) - py(0). (1)

J=1 k=0

The series on the right-hand side of (11) converges, as can be seen from the following:

ijnk|pij( pk] Z] nk(pzj +pk] Z]anpl] +Z]anpkj
j=1 k=0 j=1 k=0 Jj=1 k=0 j=1 k=0
Z]ptj +Z]7T]—E(l t)+E( ) Q.
j=1 j=1
Next, using (7) and the definition of mathematical expectation, we have
S w0 = 0] = S mllpliie) - <3 mi + ke 0
=0 =1 k=0 =0
= (i 4 E(c0))e 71, (12)

Therefore, the series on the left-hand side of (12) is convergent. This, together with the conver-
gence of the series on the right-hand side of (11), allows us to change the order of summation

> 0> mlpy () — py(t) e > Jlpy(t) = pi2)]-

=1 k=0 k j=1

Ma

i
=

This expression, combined with (11) and (12), gives the bound
p(i, 1) = 7l < (i + E(c0))e "7, (13)
Substituting (3) into (13), we prove the theorem. [

Theorem 4. Let X be the TKF91-BD process. For i € S,

e (u=2)

lp(i,t) —=n|| = |i — , t=0. (14)

w— A
Proof. We have that

IpGi8) = 7l = klpy(t) — m| >
=1

The expression (2) implies that
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A
w— A
Combining this with (3), we complete the proof. [

E(i,t) — E(c0)| = el

1 —

Theorems 3 and 4 allow us to obtain upper and lower convergence bounds that are uniform
over i in a certain range. Such bounds are given by Proposition 1.

Proposition 1. I i < A(u — A), then, for all j=0, ... i,

A
-2

i—

R ) R
w— A

Proof. Follows directly from Theorems 3 and 4. [

When studying convergence to stationarity, we are frequently interested in knowing how much
time it would take the process to reach a certain vicinity of the equilibrium. The key value of The-
orems 3 and 4 is that they allow us to obtain upper and lower estimates on this time. For given
i€ S, define

t(i,e) = inf{t > 0 : ||p(i, 1) — n|| < &}.

Thus, (i, ¢) is the time required for the distributions to get as close as ¢ in our metric || - ||. The-
orems 3 and 4 provide the following bounds:

,uii log (81 )” ) < t(iye) < ,ui/l log <81 (H_uii)) (16)

w— 4
Since [|p(i,0) — n|| =i+ A/(n — A) — 2in;, we consider only the case ¢ <i+ 1 /(u— 1) — 2im;.
While the upper bound in (16) is always informative, the lower bound becomes less than 0 if
li — A /(u — A)| < & and, therefore, can be replaced by the trivial bound 0 < 7(i,¢). In such cases,
the upper bound (10), which implies the upper bound in (16), is all we have. Thus, it is necessary
to investigate how tight the bound (10) is.
Having an exponential bound of the form

i —

lp(i,1) — =] < Cie™, (17)

we would like to investigate if the constant C; in this bound could be made smaller, and the
constant b could be made larger. If there is some b, such that, for any b > b, there is no
such C; that (17) holds, then by can be regarded as the ““true” rate of exponential convergence
of ||p(i,t) — = || to 0. The ultimate goal of the convergence rate analysis is to determine such
bo. The constant b is far more important than C;, since it determines the speed of exponential
convergence to equilibrium. This becomes clear when we wish to estimate the time 7(i,&). As
follows from (17),

1(i,e) < b 'log(Ci/e). (18)
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Since the right-hand side of (18) depends linearly on 5! and logarithmically on C;, the influ-
ence of b is significantly greater than that of C;. As a matter of fact, since

log(2) ~0.69 and log(10”) ~ 46.05, (19)

it is 5~! that determines the order of magnitude of 7(i,¢). Thus, if our estimate of b is near by, we
are likely to be able to estimate the order of magnitude of (i, ¢) accurately, despite the fact that
the corresponding C; (such that (17) holds for b, C;) may be huge. For the lower bound on z(i,¢),
such as the one on the left-hand side of (16), the dependency on the pre-exponential constant (in
our case, |i — A/(u — 2)|) will also be logarithmic, so that the order of magnitude of (i, &) will be
determined by the exponential rate.

Returning to the TKF91-BD process, it is easy to see that the rate u — 4 of exponential conver-
gence cannot be increased. If we could increase it, then for some ¢ > 0 we would have

PG, ) = mll < [i = 2/ (1 = 2)[e” ",
which is impossible (by Theorem 4). Thus, for the TKF91 process, Eq. (10) is a sharp upper
bound of the form (17). Since the rates of exponential convergence of the upper and lower bounds
coincide, we come to the conclusion that the lower bound also has the exact rate of exponential
convergence, and in this sense is tight.

It is also important to note that, for any fixed r > 0, the lower bound Eq. (14) approaches the
upper bound (10) as i — 0. Accordingly, our bounds are especially tight for small i, and become
exact for i = 0. This property is advantageous for the analysis of sequence data because there ex-
ists compelling evidence that the early, ancestral proteins tended to be quite short [24]. In fact, it is
conceivable to model sequence length evolution setting the initial length equal to 0, in which case
we account for the “birth” of the sequence.

4. Substitution models and their convergence

In the TKF91 model, substitutions are described by a continuous-time Markov chain on the
state space Sy, with N =4 in the case of nucleotide sequences, and N = 20 in the case of amino
acid sequences. While the primary focus of this paper is to assess the speed of convergence for the
TKF91-BD process, it is of interest, for the sake of comparison, to investigate the convergence of
the substitution models as well. Here we discuss the convergence of the well-known Jukes—Cantor
[25]and Kimura [26] models of nucleotide substitution (for a description of these models, see also
[27]). Similar studies can be carried out for Markov chain models of amino acid substitution in
protein sequences; a method of constructing the transition rate matrix for such models is de-
scribed in [28] (see also Chapter 8 of [29]).

As above, our main goal is to estimate the distance between the distributions p(i, #) and =, which
are defined for finite Markov chains in a similar way to the case of birth-death processes. While
the metric || - || utilized in the preceding sections is well-suited for birth—death processes on infinite
state space, for finite probability vectors p = (p;) and p = (p;), i € Sy, a more simple and natural
distance is the /;-distance defined by

lp—Bll, =D lp = Bil-

€SN
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This metric is frequently applied in the studies of stability and convergence of finite Markov
chains [20,22,30], and this is the metric we use for the substitution models.

The case of finite Markov chains is much simpler compared to infinite state-space birth—death
models, because we can always compute the distributions using standard numerical procedures.
The situation is even better for the Jukes—Cantor and Kimura models which are analytically trac-
table, meaning that it is possible to obtain explicit expressions for ||p(i,#) — n|, . The Jukes—Can-
tor model is defined by the single parameter p, the state-independent nucleotide substitution rate
(the states correspond to the 4 nucleotides). All the stationary probabilities are equal to 1/4. Using
the known expressions for the transition probabilities of the model [27], it is easy to show that, for
i=1,....4,

. 3 _
Ip(i,) = 7, =5 20)
For the Kimura model, all the stationary probabilities are also equal to 1/4, and
3 1 1 1
HI)(Z7 t) — 7'[”11 = Ze*‘wt + 56*2(1+ﬁ)t + Ze*“'ﬁl‘ _ 56*2(‘%4»/3% , i = 1’ . 747 (21)

where o and f§ are the rates of transitions (in the genetics sense) and transversions, respectively.

5. Results and discussion

In this section we apply our bounds to estimate the rate of convergence for the TKF91-BD pro-
cess with parameters derived from biological sequence data. The methodology underlying our anal-
ysis is as follows. We calculate the upper and lower bounds for the distance ||p(i,7) — =||, and use
them to estimate the values (i, ¢) for different ¢. Since we know that the convergence bounds give
the correct order of magnitude for ||p(i, 7) — 7 ||, we will be able to judge whether or not convergence
with accuracy ¢ occurs on realistic timescales. For ¢, we use the following general definition

&= ol, (22)

where I =i+ /(p — 1) — 2im; is the initial value for ||p(i,7) — 7||, and w is a small positive number.

Such a definition is justified by the idea that convergence can be interpreted in the relative sense:

we can regard convergence accuracy as sufficient if the norm ||p(i, #) — n|| is reasonably small com-

pared to ||p(i,0) — =||. Thus, we say that a 100w% convergence was achieved at time <7 if
lp(i,2) — nf| < wl|p(i,0) — .

To estimate the parameters of the TKF91 model, Hein et al. [1] applied the TKF91 indel model
to the human o and 3 globins, and obtained the estimates A = 0.03718, u = 0.03744. The same
estimates were obtained by Knudsen and Miyamoto [10]. The units for these estimates were indels
per substitution. As can be inferred from Fig. 5 of [1], the authors assumed the absolute substi-
tution rate to be (approximately) 1 substitution per site per 10° years (Byr). This number agrees
with the known estimates for globins [31]. Thus, we have enough data to apply our results to esti-
mate convergence. The rate of exponential convergence is ¢ — A = 0.00026. (The equilibrium se-
quence length for the rates as above is A/(u — A) ~ 143 amino acids. This is very close to the
observed lengths of 141 («) and 146 () of actual proteins, as was noticed by Hein and coauthors
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[1].) The dependency of the upper and lower bounds (10) and (14) on ¢ for different i (initial se-
quence lengths) is shown in Fig. 2; the possibility to obtain bounds uniform over i is provided by
Proposition 1. As was discussed above, in the case of exponential convergence, the convergence
rate is mostly determined by the exponent, and the exponents in our bounds are exact. Therefore,
we can expect the distribution of the process to be close to the stationary distribution when the
upper and lower bounds are close to each other, compared to the distance between the bounds
at time 0. If at time ¢ the distance between the upper and lower bounds is almost as large as
the corresponding distance at time 0, then we should expect that at time ¢ the distribution of
the process is likely to be far from equilibrium. It is obvious from Fig. 2 that the convergence
of the upper and lower bounds can be noticed only after 100 Byr.

We now characterize convergence via the convergence times (7, ¢). As follows from general con-
siderations, if the distance ||p(i,7) — x| is not less than 25% of the initial distance, we can hardly
speak of convergence to equilibrium. Fig. 3 shows the dependencies of the upper and lower
bounds on (i, ¢) in (18) on w via (22) for different initial sequence lengths. We chose the initial
length values assuming that the ancestral sequence is shorter than the actual globin. It is easy
to see that for all initial sequence lengths the 25% convergence time is greater than 100 Byr.
The relatively weak influence of the initial sequence length on the upper bound in (16) is illus-
trated by Fig. 4; a similar picture can be generated for the lower bound. Note that the dependence
on ¢ is also relatively weak, since ¢ enters the upper bound in (16) under the logarithm.

One of the main difficulties with using the equilibrium hypothesis within the TKF91 framework
stems from the relationship between the rate of exponential convergence and the equilibrium
sequence length. Indeed, if we know that the equilibrium length of a sequence should be greater
than a, then the expression (3) for the equilibrium length gives us the inequalities

ie[0,100]
— — —ie [0, 50]
— —ie[0,5]
—i=0

200 -

150 — — — - — . _

100 -

Convergence bounds

Time, Byr

Fig. 2. Upper (10) and lower (14) convergence bounds for the TKF91-BD process; i is the initial sequence length. The
bounds are uniform over i belonging to the intervals specified in the figure legend.
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Fig. 3. Dependency of the upper and lower bounds in (16) on @ (via (22)) for protein sequences (see text for details); i is
the initial sequence length. In this figure, the upper bounds are indistinguishable from the exact bound for i = 0.
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Fig. 4. Dependency of the upper bound in (16) on ¢ and i + A/(u — 4) for protein sequences.
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Since a/(a + 1) approaches 1 for large a, if a is large, A/u is very close to 1, in which case the con-
vergence rate, y — A, will necessarily be small. Conversely, if the rate of convergence is large, then
//p and, therefore, a, will be small. The conclusion is that it may be quite difficult to have realistic
convergence rates and realistic equilibrium sequence lengths at the same time. An example of slow
convergence for realistic equilibrium length was given above. Now we illustrate the complemen-
tary situation by an analysis of the human DNA evolution.

Indel mutation rates in human processed pseudogenes were estimated by Ophir and Graur [32].
They found that an insertion occurs once per every 100 substitutions, and a deletion occurs once
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per every 40 substitutions. The average insertion size is approximately 5 nt, and the average dele-
tion size is 8 nt. We shall treat all indel events as one-nucleotide indels; this is definitely a stretch,
but it is necessary to make one in order to use the TKF91-BD process as a model for the length
evolution of real sequences. We thus have about 5 insertions per 100 substitutions, and 8 deletions
per every 40 substitutions. To infer the insertion and deletion rates, we need an estimate for sub-
stitution rates in pseudogenes. This rate has been estimated to be 3.9 substitutions per site per Byr
[33], which implies that we can take 4 = 0.195 and u = 0.78 for the TKF91-BD process as a model
of pseudogene length evolution. The corresponding rate of exponential convergence is
1 — A=0.585, which is three orders of magnitude larger than the convergence rates for proteins
discussed above. In a similar way to the protein sequences, it can be shown that 25% convergence
for i on the order of 1000 can be achieved in approximately 2 Byr, which is biologically realistic.
However, the equilibrium length of the sequence is A/(u — 4) ~ 0.33 nt, which is obviously too
small to reflect any reasonable pseudogene length (the average length of a human processed pseu-
dogene is close to 1100 nt [34]).

Now we consider the convergence rates for substitution models. For the Jukes—Cantor model,
we take the exponential convergence parameter p = 3.9, as above. The plot of the distance be-
tween the distributions, calculated according to formula (20), is given in Fig. 5. It is natural to
say that the inequality ||p(7,7) — x|, < 0.05 means that the chain is sufficiently close to equilib-
rium: indeed, the mean absolute difference per state probability, ||p(i,#) — x|, /4, is on the order
of 0.01. This degree of closeness to equilibrium is attained after about 230 Myr (millions of years)
of evolution. After 100 Myr of evolution, we have ||p(i,#) — =/, /4 ~ 0.08, which is probably close
enough to equilibrium. As an example of Kimura’s model, we can consider the one with transition
rate 1.71 and transversion rate 1.22 events per site per Byr, as was estimated by comparison of
human and rodent protein-coding sequences [35]. The plot of the distance between the distribu-
tions for this model, calculated according to (21), is given in Fig. 5. As we can see, convergence
occurs at a smaller rate than for the Jukes-Cantor model; ||p(i, 1) — z||, ~ 0.008, which indicates
sufficient closeness to equilibrium at approximately 1 Byr.

I1 distance between the distributions

Jukes—Cantor model
— — — Kimura model

10" 102 10

Time, Myr

Fig. 5. Convergence to equilibrium for Markov chain substitution models: the /;-distance for the Jukes—Cantor model
(Eq. (20)) and for the Kimura model (Eq. (21)).
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The TFK91 model is based on the following main assumptions: (a) the size of all insertions and
deletions is 1 nucleotide (amino acid); (b) insertion and deletion rates do not change over time; (c)
the ancestral sequences have equilibrium length. Our results show that, for the considered exam-
ples, these assumptions, applied simultaneously, contradict biological reality. The 25% conver-
gence time of 100 Byr that we stated above is clearly beyond biological reality, since this time
period exceeds the Earth’s age. Of course, if the process has started from the equilibrium distri-
bution at time 0, it would have been in equilibrium at all times. However, this would be possible
only if the sequence evolution process has started before the time 0 from some specific state and
has had enough time to converge to the equilibrium distribution; starting from equilibrium by
pure chance appears to be highly improbable. By considering the sequence length distributions
which are fully concentrated in a single state, we assumed that the time O is the very beginning
of the sequence evolution process, so that there is no reason to expect any prior convergence.

We showed that if the convergence rate for the TKF91 model is high enough, the resulting equi-
librium sequence length can become too small to describe any real sequence. It is plausible that
taking into account larger-size insertions and deletions, as well as inhomogeneity in the insertion
and deletion rates, would decrease the convergence time and keep the equilibrium length reason-
able. But if the TKF91 model is used in its original form, the findings regarding sequence evolu-
tion obtained under the equilibrium hypothesis should be treated with care. It is noteworthy that
applicability of the equilibrium hypothesis for the practical purposes of statistical sequence align-
ment depends on the sensitivity of the methods in question to deviations from this hypothesis.
This issue requires further investigation.

Our analysis showed that, for the substitution models, the equilibrium assumption is consider-
ably more realistic. Our estimate of convergence time for nucleotide sequences for the Kimura
model was 1 Byr. If the ancestral sequence has existed for 1 Byr before the modern sequences have
originated from it, then the equilibrium assumption can be regarded as justified. For DNA se-
quences of some ancient proteins, such as ribosomal proteins, this can be true, since it was esti-
mated that life on the Earth began more than 3 Byr ago [36]. For the Jukes—Cantor model,
with the convergence time of a few hundreds of Myr, the equilibrium assumption is applicable
in a much wider variety of situations.

Our overall conclusion is that the TKF91 model in combination with equilibrium hypothesis
fails to capture certain important characteristics of the process of length evolution of biological
sequences. Further investigations are needed to develop more realistic evolution models that
would match the tractability and practical convenience of the TFK91 model. Finally, we would
like to point out that the methods of convergence rate estimation for birth—death process devel-
oped in this paper are quite general. The formalism of birth—death processes is an important tool
of mathematical modeling in biology [37]. Our Theorems 2-4 can be generalized to other birth—
death processes, thus providing means of convergence analysis and validity verification for a class
of biologically important mathematical models.
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