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Abstract

We show that, for reversible continuous-time Markov chains, the closeness of the nonzero
eigenvalues of the generator to zero provides complete information about the sensitivity
of the distribution vector to perturbations of the generator. Our results hold for both the
transient and the stationary states.
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1. Introduction

In sensitivity analysis for Markov chains, it is important to study the relationship between
the stability under perturbation and other properties of the chain. Eigenvalues of the generator
or the transition probability matrix are among the factors which establish such relations. In
[3] and [6], it was shown that, for the stationary distribution of a finite discrete-time Markov
chain, the stability is controlled by the closeness of the nonunit eigenvalues of the transition
probability matrix to unity; see also [2]. In this paper we discuss perturbation bounds which
hold for both the transient and the stationary states. We prove that, for reversible chains in
continuous time, the sensitivity of a chain under perturbation of the generator is governed
primarily by the spectral gap of the generator. We thus demonstrate a fundamental connection
between the stability of a reversible chain and its speed of convergence to stationarity, allowing
us to simplify the analysis of Markov chain models arising from applications; see [4].

2. Eigenvalue bounds for a condition number

Consider two continuous-time Markov chains, X(t) and X̃(t), t ≥ 0, with finite state space
S = {0, 1, . . . , N}, N ≥ 1, and respective generators Q and Q̃ (with Q �= Q̃). Denote by
p(t) and p̃(t) the distribution vectors of X(t) and X̃(t):

p(t) = p(0) exp(tQ), p̃(t) = p̃(0) exp(tQ̃).

In this paper we study perturbations of the generator, so we set p̃(0) = p(0). We also assume
that X(t) has a unique stationary distribution π = (πi).

We regard all vectors as row vectors, and ‖ · ‖ denotes the l1-norm (absolute entry sum)
for vectors and the corresponding induced norm (maximum absolute row sum) for matrices.
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Define
β(t) = 1

2 max
i,j∈S

‖(ei − ej ) exp(tQ)‖,
where ei is the vector whose ith entry is 1 and whose other entries are all 0. Set

τ1 = inf{t > 0 : β(t) ≤ e−1}.
Theorem 1. The following inequality holds:

sup
t≥0

‖z(t)‖ <
eτ1

e − 1
‖E‖,

where z(t) = p̃(t) − p(t) and E = Q̃ − Q.

Proof. For ‖z(t)‖, we have the bound

‖z(t)‖ ≤ ‖E‖
∫ t

0
β(u) du, t ≥ 0

(see [4, Equation (2.5)]). This implies that

sup
t≥0

‖z(t)‖ ≤ ‖E‖
∫ ∞

0
β(u) du. (1)

Note that the submultiplicativity property holds for β(t): for all s, t ≥ 0, β(s + t) ≤ β(s)β(t);
see e.g. [1, Chapter 2]. Since β(s) < 1 for all s > 0,

β(t) ≤ exp

(
−

⌊
t

τ1

⌋)
, t ≥ 0, (2)

the inequality being strict if 0 ≤ �t/τ1	 < t/τ1. It follows that∫ ∞

0
β(u) du <

∫ ∞

0
exp

(
−

⌊
u

τ1

⌋)
du = τ1(1 + e−1 + e−2 + · · · ) = eτ1

e − 1
.

This, together with (1), proves the theorem.

Theorem 1 shows that the quantity eτ1/(e − 1) can be viewed as a condition number with
respect to perturbations of the generator. Now we shall bound τ1 in terms of the eigenvalues
of Q.

Denote the eigenvalues of Q by λm, m = 0, 1, . . . , N ; choose λ0 = 0. Notice that,
since X(t) has a unique stationary distribution, the zero eigenvalue has multiplicity 1. Set
λ = min1≤m≤N | Re λm|; this quantity is the spectral gap of Q. The spectral gap is equal to the
decay parameter of X(t), that is,

λ = sup{γ > 0 : ‖p(t) − π‖ = O(exp(−γ t)) as t → ∞ for all p(0)}.
This, in combination with (2) and the inequalities

exp

(
−

⌊
t

τ1

⌋)
≤ exp

(
1 −

(
t

τ1

))
and ‖p(t) − π‖ ≤ 2β(t),

yields that
1

λ
≤ τ1. (3)

Suppose now that X(t) is reversible, that is, it is irreducible and the detailed balance
conditions

πiqij = πjqji
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are satisfied for all i, j ∈ S. This assumption implies that all the eigenvalues of Q are real.
Define the average hitting time, τ0, by

τ0 =
∑
i∈S

∑
j∈S

πiπj Ei Tj ,

where Ei Tj is the mean first hitting time for the state j if the chain starts from the state i. The
eigentime identity (see [1, Chapter 3]) gives

∑
j∈S

πj Ei Tj =
∑
m≥1

1

|λm|
for each i ∈ S; thus, we obtain that

τ0 =
∑
m≥1

1

|λm| . (4)

It follows from the results of [1, Chapter 4] that

τ1 ≤ 66τ0. (5)

This, together with (3) and (4), implies that, for a reversible chain,

1

λ
≤ τ1 ≤ 66

∑
m≥1

1

|λm| ≤ 66N

λ
. (6)

We have thus proved the following. If a Markov chain with a unique stationary distribution
is well conditioned (i.e. if τ1 is small), then all nonzero eigenvalues of its generator are well
separated from 0 (since the spectral gap is large). If the chain is reversible and all nonzero
eigenvalues are well separated from 0 (i.e. if the spectral gap is large), then the chain is well
conditioned. It should be noted that the latter remark treats N as fixed, while many interesting
chains are members of families which depend on N . To investigate the stability of such chains
via (6), it is useful to know how λ depends on N . For increasing N , the inequalities in (6) may
produce inaccurate quantitative estimates of stability, but, as we shall see in Section 3, they can
give good qualitative results.

3. An example

As an example, consider the M/M/N /0 queue (a Markovian queueing system with N servers
and no waiting rooms for customers). The corresponding stochastic model is a birth–death
process, X(t), over S with birth rates bn = α, n = 0, . . . , N − 1, and death rates dn = µn,
n = 1, . . . , N . Note that a birth–death process is a reversible Markov chain. Define

κ1 = λ−1(log(C) + 1), where C =
√

max
i∈S

1

πi

− 1,

κ2 = 66eτ0

e − 1
,

κ3 = 66eN

(e − 1)λ
.

It follows from Corollary 2.1, Remarks 2.1 and 2.2 and the inequality (3.8) of [4] that, for
reversible X(t), the following inequality holds:

sup
t≥0

‖z(t)‖ ≤ κ1‖E‖;
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Table 1: Numerical experiments.

N α µ κ1 κ2 κ3

3 1 0.2 4.46 2.898 × 102 4.946 × 102

1
3 3.36 2.610 × 102 4.698 × 102

0.5 2.43 2.253 × 102 4.147 × 102

2
3 2.22 1.948 × 102 3.599 × 102

1 2.07 1.501 × 102 2.750 × 102

2 1.54 0.859 × 102 1.520 × 102

8 1 0.125 18.95 1.000 × 103 3.341 × 103

0.2 13.68 9.207 × 102 3.301 × 103

0.25 10.63 8.340 × 102 2.978 × 103

0.5 9.02 5.056 × 102 1.663 × 103

20 1 0.025 82.41 2.644 × 103 1.009 × 104

0.05 107.09 3.296 × 103 2.088 × 104

0.1 59.01 3.000 × 103 2.054 × 104

0.15 43.52 2.217 × 103 1.392 × 104

0.2 42.87 1.726 × 103 1.044 × 104

0.4 35.64 9.041 × 102 5.221 × 103

0.8 25.70 4.611 × 102 2.610 × 103

if C > 1, then the inequality is strict. Thus, κ1 is a condition number with respect to
perturbations of the generator. The quantities κ2 and κ3 are also condition numbers; for κ2
this follows from Theorem 1 and (5), while for κ3 this follows from Theorem 1 and (6). The
condition numbers κ1, κ2 and κ3 were calculated for the M/M/N /0 queue; the results are given
in Table 1. The parameter values are taken from [5].

Table 1 shows that the qualitative behaviour of κ2 and κ3 is in very good agreement with
that of κ1, which is much better quantitatively. But κ2 and κ3 are not supposed to give precise
quantitative bounds. Still, it is interesting to note that, if the constant 66 in (5) could be reduced
to 1 (this conjecture appears in [1, Chapter 4]), then κ2/66 would be a condition number, which
is sometimes smaller than κ1. For example, for N = 3, α = 1, µ = 2, we have κ1 ≈ 1.54 and
κ2/66 ≈ 1.30.
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