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Abstract. This paper obtains new stability estimates on infinite time interval and limit sta-
bility estimates for a finite homogeneous continuous-time Markov chain with a unique stationary
distribution. The connection between the stability of the Markov chain under perturbation of the
generator and the rate of convergence to stationarity is considered. Markov chains with a strongly
accessible state are given special attention.
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1. Introduction. By stability of a continuous-time Markov chain we mean its quality
of maintaining the approximate values of its probabilistic characteristics under small changes
in the parameters (the generator and the initial distribution). In the case when Markov
chains are used as models of real processes, the parameters defining the chain are given
with some error. This leads to the necessity of obtaining quantitative stability estimates for
the Markov chain, i.e., estimates of the magnitude of possible changes of the characteristics
under the given parameters of perturbation. The stability estimates on the infinite time
interval and limit stability estimates are of special interest (see [1]). Stability estimates for
continuous-time Markov chains were considered in [2], [3], [4], [5], [6], [7], [8], [9], [10], and [11].
This paper proves new inequalities, permitting us to estimate the stability of homogeneous
continuous-time Markov chains with a finite state space. The obtained estimates show a
connection between stability and the characteristics of the Markov chains such as the rate of
convergence to the stationary distribution, number of states, the magnitude of the spectral
generator gap, and absolute value of the entries of the generator.

Let X = {X(t), t � 0} and X̃ = {X̃(t), t � 0} be continuous-time Markov chains with

state space S = {0, 1, . . . , N} (1 � N < ∞) and generators Q and Q̃ = Q + E, respectively.
We denote by p(t) and p̃(t) the vectors of state probabilities (distributions) of the chains X

and X̃ at time t � 0 (all vectors without the transpose sign are column vectors). In what
follows we assume that the chain X has a unique stationary distribution π = (πj).

As a measure of closeness of two distributions p(1) and p(2) on the set S we shall
use d(p(1), p(2)), which we define to be equal to a variation distance between the respec-
tive probability measures p(1)(A), p(2)(A) (A ⊆ S) [12]:

d(p(1), p(2)) = max
∑
i

∣∣p(1)(Ai) − p(2)(Ai)
∣∣,

where the maximum is taken over all possible partitions {Ai} of the set S. By ‖ · ‖ we
denote the l1-norm (absolutely entry sum) for vectors and the ∞-norm (maximum absolute
row sum) for matrices. The equality d(p(1), p(2)) = ‖p(1) − p(2)‖ holds. In what follows we
shall need the relation

d(p(1), p(2)) = 2 max
A⊆S

∣∣p(1)(A) − p(2)(A)
∣∣.(1)
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(Concerning (1) we note that some authors call variation distance the quantity which is twice
as small as our d(·, ·).)

The main goal of this paper is to obtain upper bounds on ‖p̃(t) − p(t)‖ and ‖π̃ − π‖,
where π̃ is a stationary distribution of the chain X̃ (generally speaking, it is not necessarily
unique). In inequalities permitting us to estimate the stability of the distribution of the
chain X, the right-hand side is of the form κ‖E‖. The value κ characterizes the sensitivity
of the chain X to perturbations of the generator; following [13] we call similar values condition
numbers. If a condition number is large, then we call the chain ill-conditioned, and if the
condition number is small, we call the chain well-conditioned (with respect to the given
condition number).

2. Stability and the rate of convergence to the stationary process. In
what follows we shall need “the notation of the ergodicity coefficient of a matrix” (generated
by the vector l1-norm). The ergodicity coefficient τ1(B) of a real square matrix B is defined
in the following way:

τ1(B) = sup
‖v‖=1,vTh=0

∥∥BTv
∥∥,

where v are vectors with real entries and h is the vector of all ones. For τ1(B) the following
relation holds:

τ1(B) =
1

2
max
i,j∈S

∥∥BT(ei − ej)
∥∥;(2)

here and in what follows ek is the vector whose kth entry equals 1, and other entries equal 0
(see [14]). We recall the property of the ergodicity coefficient βt := τ1(e

tQ), which we shall
use in what follows: βt < 1 for all t > 0. This property follows from (2) and from the fact
that the chain X has a unique stationary distribution. In addition, obviously, limt→∞ βt = 0.

Taking into account the definition of the ergodicity coefficient we have∥∥p̃(t) − p(t)
∥∥ =

∥∥P̃T(t)p̃(0) − PT(t) p(0)
∥∥ �

∥∥PT(t)(p̃(0) − p(0))‖ + ‖DT(t) p̃(0)
∥∥

�
∥∥p̃(0) − p(0)

∥∥βt +
∥∥D(t)

∥∥,(3)

where P̃ (t) = etQ̃, P (t) = etQ, D(t) = P̃ (t) − P (t). Hence,

sup
t�0

∥∥p̃(t) − p(t)
∥∥ �

∥∥p̃(0) − p(0)
∥∥ + sup

t�0

∥∥D(t)
∥∥.

In addition, if π̃ is a stationary distribution of the chain X̃, then, assuming p̃(0) = π̃ in (3)
and passing to the limit as t → ∞, we obtain ‖π̃ − π‖ � supt�0 ‖D(t)‖. In this situation we
are interested in uniform in t � 0 estimates of the value ‖D(t)‖.

In [4] the inequality

∥∥p̃(t) − p(t)
∥∥ �

∥∥p̃(0) − p(0)
∥∥βt + ‖E‖

∫ t

0

βu du, t � 0,(4)

is proved; this inequality implies the estimate∥∥D(t)
∥∥ < t ‖E‖, t > 0.(5)

Relation (5) permits us to estimate the stability of the distribution of the chain X only at
finite time intervals. Stability estimates for infinite intervals can be obtained if we use the
exponential estimates of the rate of convergence p(t) to π as t → ∞.

Let b, C > 0 be such that for all p(0) the inequality∥∥p(t) − π
∥∥ � Ce−bt, t � 0,(6)
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holds. Note that (6) implies C � 2(1 − minj∈S πj) � 1; in the right-hand side the equality
is achieved only for chains with two states and a unique stationary distribution. From (4)
and (6) the estimate

sup
t�0

∥∥D(t)
∥∥ � b−1(logC + 1)‖E‖(7)

follows; if C > 1, then the inequality in (7) is strict; see [4]. Inequality (7) differs from the
results obtained earlier by the logarithmic dependence of the right-hand side on C; results
of other authors give estimates with linear dependence (see [4]). In this section we give a
new stability estimate with logarithmic dependence of the right-hand side on C. The proof
is based on the results of Anisimov [11].

Lemma 1. The inequality

sup
t�0

∥∥D(t)
∥∥ � inf

t>0
γt‖E‖,(8)

where γt = t/(1 − βt), holds.
Proof. Let

ϕt = max
i,j∈S,A⊆S

∣∣p(i, t,A) − p(j, t,A)
∣∣, ψt = max

i∈S,A⊆S

∣∣p(i, t,A) − p̃(i, t,A)
∣∣,

where p(i, t,A), p̃(i, t,A) are the transition functions for chains X and X̃, respectively (i ∈ S,
t � 0, A ⊆ S). If ϕs < 1 for some s > 0, then, applying Theorem 2 of [11], we obtain

ψt �
supu�s ψu

1 − ϕs

(
1 − ϕ[t/s]+1

s

)
, t � 0,(9)

where [ · ] denotes the integer part. Using (1), it is not difficult to see that ϕt = βt and
ψt = ‖D(t)‖/2. Hence, supu�s ψu < s‖E‖/2. These relations, inequality (9), and the fact
that βt < 1 for all t > 0 imply the statement of the lemma.

Theorem 1. Let b > 0 and C � 1 be such that (6) holds. Then

sup
t�0

∥∥D(t)
∥∥ � inf

0<y<1

b−1 log(C/y)

1 − y
‖E‖.(10)

Proof. Taking into account (2) and applying the triangle inequality we obtain

βt � max
j∈S

∥∥PT(t) ej − π
∥∥ � Ce−bt, t � 0.(11)

Let t0 be such that Ce−bt0 = 1. Since C � 1, it follows that t0 � 0. By (8) and (11) we have

sup
t�0

∥∥D(t)
∥∥ � t‖E‖

1 − Ce−bt
, t > t0.(12)

Let y = Ce−bt; y ∈ (0, 1) for t > t0. Then (12) can be written as

sup
t�0

∥∥D(t)
∥∥ � b−1 log(C/y)

1 − y
‖E‖, y ∈ (0, 1).

The theorem is proved.
Remark 1. Different approaches to obtaining estimates of the form (6) are discussed

in [4].
The behavior of the function f(y) := log(C/y)/(1−y) on the interval (0, 1) is of interest.

The following proposition is valid.
Proposition 1. If C > 1, then f(y) has one critical point y0 on (0, 1). At this point f(y)

has a minimum, and limy↓0 f(y) = limy↑1 f(y) = ∞. We can find the point y0 from the
equation C = y exp((1 − y)/y). If C = 1, then f(y) monotonically decreases on (0, 1),
limy↓0 f(y) = ∞, and limy↑1 f(y) = 1.
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3. Stability estimates and the entries of the generator. Here we give
stability estimates for which the condition number can be explicitly expressed in terms of
the entries qij of the generator Q. As in the previous section, Lemma 1 is the base for the
obtained results. An especially interesting and easily applied result was proved for Markov
chains with a strongly accessible state.

Definition 1. If there exists k0 ∈ S such that qik0 > 0 for all i ∈ S \ {k0}, then we
say that the chain X has a strongly accessible state k0 (similarly to the discrete-time case;
see [15]).

Lemma 1 shows that supt�0 ‖D(t)‖ can be estimated from above by limt→∞ γt‖E‖ and
limt→0 γt‖E‖ if the limits exist and are finite. It is not difficult to see that limt→∞ γt = ∞.
Theorem 2 explains the behavior of γt as t → 0.

Definition 2. We say that assumption A is satisfied for a pair of states (i0, j0) ∈ S × S
(i0 �= j0) if the following statements are valid simultaneously:

(a) qi0j0 = qj0i0 = 0;
(b) there is no k ∈ S \ {i0, j0} such that qi0k > 0 and qj0k > 0.
Theorem 2. If for some pair of states assumption A is satisfied, then limt→0 γt = ∞;

otherwise 0 < limt→0 γt < ∞,

lim
t→0

γt = ξ−1, ξ :=
1

2
min

i,j∈S,i
=j
fij ,

fij := |qii + qjj − qij − qji| −
∑

k∈S\{i,j}

|qik − qjk|, i �= j.

Proof. Denote by pij(t) the entries of the matrix P (t). For t → 0 we have pij(t) =
qijt + o(t), i �= j, pii(t) = 1 + qiit + o(t). From here, for t → 0,∑

k∈S

∣∣pik(t) − pjk(t)
∣∣ = 2 − |qii + qjj − qij − qji| t +

∑
k∈S\{i,j}

|qik − qjk| t + o(t), i �= j.

Taking into account (2), as t → 0 we obtain

1 − βt =
t

2
min

i,j∈S,i
=j

{
fij + εij(t)

}
, lim

t→0
εij(t) = 0.

For some pairs of indices (ik, jl) ∈ S×S (ik �= jl) the equality 1
2
fikjl = ξ holds; hence, there

exists t0 > 0 such that

1 − βt

t
= ξ +

1

2
min

(ik,jl)
εikjl(t), t < t0.(13)

If for some pair (i0, j0) assumption A is satisfied, then ξ = fi0j0 = 0, since
∑

j∈S qij = 0 for
all i ∈ S. If assumption A is not satisfied for any pair of states, then fij > 0 for all i, j ∈ S
(i �= j). Passing in (13) to the limit as t → 0, we arrive at the statement of the theorem.

Remark 2. Assumption A is not satisfied for any pair of states if, for example, the
chain X has a strongly accessible state. Note that the existence of a strongly accessible state
is not necessary for satisfying the relation limt→0 γt < ∞. For example, we consider the case
when S = {0, 1, 2, 3} and the one-jump transition structure of the chain X for one jump is
the following: 0 ↔ 1, 1 ↔ 2, 2 ↔ 3, 3 ↔ 0 (here the notation i ↔ j denotes that qij > 0
and qji > 0); other transitions are impossible. By Theorem 2, for such a chain we have
limt→0 γt < ∞, although there are no strongly accessible states.

Theorem 3. If the chain X has a strongly accessible state, then

δ :=
∑
j∈S

min
i∈S\{j}

qij > 0

and

sup
t�0

∥∥D(t)
∥∥ � δ−1‖E‖.(14)
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Proof. For βt the following representation takes place (see [16]):

βt = 1 − min
i,j∈S

∑
k∈S

min
{
pik(t), pjk(t)

}
.

Hence,

βt � 1 −
∑
j∈S

min
i∈S

pij(t).(15)

In view of (8) and (15), we obtain

sup
t�0

∥∥D(t)
∥∥ � inf

t>0

t‖E‖∑
j∈S mini∈S pij(t)

.(16)

Since limt→0 pii(t) = 1 and limt→0 pij(t) = 0 for i �= j, there exists t0 > 0 such that∑
j∈S

min
i∈S

pij(t) =
∑
j∈S

min
i∈S\{j}

pij(t), t � t0.

If i �= j, then for t → 0 we have pij(t) = qijt + o(t). Hence,

lim
t→0

∑
j∈S

min
i∈S

pij(t)

t
= δ.

From this expression and inequality (16) the statement of the theorem follows.
Remark 3. The proof of Theorem 3 implies that if X has a strongly accessible state,

then ξ−1 � δ−1.
We note that Markov chains with a strongly accessible state are interesting with their ap-

plications. As an example we consider a chemical reaction between substances T0, T1, . . . , TN ,
in which a molecule of species T0 can be in one of N+1 states: free, or bound with a molecule
of species Tl, l = 1, . . . , N . The molecule T0 passes from a free to a bound state if it bounds
with one of the particles Tl. Suppose that the molecule T0 can pass to a free state again.
Transitions from one bound state to another reflect transformations of bound molecules
(which occur, for example, as a result of the action of an enzyme). Similar reactions are
often met in molecular biology [17]. To describe changes of the state of the molecule T0 one
can use the continuous-time Markov chain with the state space S having the strongly acces-
sible state 0. The state 0 in this model corresponds to the free molecule T0 and the other
states correspond to T0 bounded with one of the molecules Tl, l = 1, . . . , N (a justification
for the application of continuous-time Markov chains for modeling chemical reactions can be
found, for example, in [18]).

It is interesting to compare the statement of Theorem 3 with the stability estimate for
the stationary distribution of a discrete-time Markov chain obtained in [19]. Let Y and Ỹ
be finite homogeneous discrete-time Markov chains with the state space S having unique
stationary distributions ρ and ρ̃, respectively. Denote by P and P̃ the transition probability
matrices for chains Y and Ỹ . Let νk0 := mini∈S\{k0} pik0 > 0 for some k0; here pij are
entries of the matrix P . In this case the following inequality is valid (see [19]):

‖ρ̃− ρ‖ � ν−1
k0

‖P̃ − P‖.

The condition νk0 > 0 for some k0 is the condition for the existence of a strongly accessible
state k0 for the discrete-time chain Y .

Passing to the continuous-time case we suppose that the chain X has a strongly accessible
state. Then from (14) it follows that for an arbitrary stationary distribution π̃ of the chain X̃
and a unique stationary distribution π of the chain X the estimate

‖π̃ − π‖ � δ−1‖E‖
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is valid. Note that δ � δ̂ := maxj∈S mini∈S\{j} qij > 0. Thus the stability of the stationary
distribution of the Markov chain with strongly accessible state is characterized with the help
of the values of the nondiagonal entries of the transition matrix (in the discrete-time case)
or with the help of the values of the intensity transition (in the continuous-time case). In
this case the dependence of the condition number mink0 ν

−1
k0

on entries of the matrix P is

analogous to the dependence of δ̂−1 on the entries of Q.

4. Stability estimates and eigenvalues of the generator. Denote by λm,
m = 1, . . . , N +1, the eigenvalues of Q (each of the distinct eigenvalues is counted according
to its multiplicity). Set λ1 = 0. Since the chain X, by assumption, has a unique stationary
distribution, its zero eigenvalue has multiplicity 1; real parts of other eigenvalues are negative.
Set λ = min2�m�N+1 |Reλm|; this value is called the spectral gap of the generator Q. For
the chain X the spectral gap is equal to the convergence parameter:

λ = sup
{
α > 0:

∥∥p(t) − π
∥∥ = O(e−αt) as t → ∞ for all p(0)

}
(see [20], where a method of estimating λ is considered). Thus the value λ is a characteristic
of the rate of the exponential convergence to the stationary distribution for the chain X.
In this situation the stability estimates for the chain X under the generator perturbations
expressed in terms of λ are of interest.

Set μm(t) = eλmt, where 1 � m � N+1, t � 0. The quantities μm(t) are the eigenvalues
of the matrix P (t). Denote μ(t) = max2�m�N+1 |μm(t)|.

Proposition 2. The following estimate holds:

λ−1 � inf
t>0

γt.

Proof. Using the known property of the ergodicity coefficient (see, for example, [21]),
we obtain μ(t) � βt, t > 0. Since μ(t) = e−λt, it follows that

λ−1 = inf
t>0

t

1 − e−λt
� inf

t>0
γt.

The proposition is proved.
Corollary 1. If the chain X has a strongly accessible state, then δ � ξ � λ.
Proposition 2 shows that if the chain X is well-conditioned (with respect to the condition

number inft>0 γt), then it converges fast to the stationary process. Note that the stability
estimates in Theorems 1 and 3 are obtained by roughening inequality (8). Hence, if the
chain is well-conditioned with respect to the condition number in (10) and also with respect
to ξ−1 and δ−1, then the chain is well-conditioned with respect to inft>0 γt. Theorem 3 and
Corollary 1 permit us to reduce the analysis of stability and rate of convergence for Markov
chains with a strongly accessible state to finding the quantity δ.

In the proof of the following theorem we use the notation of a group inverse matrix B#

of a real square matrix B. The matrix B# satisfies the following relations: BB#B = B,
B#BB# = B#, and BB# = B#B; if B# exists, then it is unique. The notion of the group
inverse is widely applied in the theory of finite discrete-time Markov chains; see [13], [22].

Theorem 4. For an arbitrary stationary distribution π̃ of the chain X̃ and a unique
stationary distribution π of the chain X the following estimate is valid:

‖π̃ − π‖ � Nρ−1‖E‖,

where ρ = min2�m�N+1 |λm|.
Proof. The distributions π and π̃ are the stationary distributions of discrete-time Markov

chains with state space, the state space S, and the transition matrices P (t) and P̃ (t), t > 0,
respectively. Moreover, for any t > 0, π is a unique stationary distribution corresponding
to P (t). These facts, together with relation (4) of [23] and our inequality (5), give the
estimate

‖π̃ − π‖ � inf
t>0

τ1
(
A#(t)

)
t‖E‖,(17)
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where A(t) = I − P (t), I is the identity matrix.
Inequality (10) of [23] implies

τ1(A
#(t)) �

N+1∑
m=2

1

1 − μm(t)
.

Since τ1(·) is nonnegative, it follows that

τ1(A
#(t)) � N

min2�m�N+1 |1 − μm(t)| .(18)

From (17) and (18)

‖π̃ − π‖ � inf
t>0

Nt‖E‖
min2�m�N+1 |1 − μm(t)| � lim

t→0

N‖E‖
min2�m�N+1 |1 − μm(t)|/t(19)

follows. Passing to the limit as t → 0 in the right-hand side of (19) and taking into account
that

lim
t→0

t−1(1 − μm(t)
)

= λm,

we arrive at the statement of the theorem.
Corollary 2. ‖π̃ − π‖ � Nλ−1‖E‖.
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