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Abstract

For uniformly ergodic Markov chains, we obtain new perturbation bounds which relate
the sensitivity of the chain under perturbation to its rate of convergence to stationarity.
In particular, we derive sensitivity bounds in terms of the ergodicity coefficient of the
iterated transition kernel, which improve upon the bounds obtained by other authors.
We discuss convergence bounds that hold in the case of finite state space, and consider
numerical examples to compare the accuracy of different perturbation bounds.
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1. Introduction

There exists an extensive literature on perturbation bounds for Markov chains. One group of
results concerns the sensitivity of the stationary distribution of a finite, homogeneous Markov
chain, and the bounds are derived using methods of matrix analysis; see the review [2] and
recent papers [12]–[14], [21] (also see [29] for a graph-theoretic approach). Another group
includes perturbation bounds for finite-time and invariant distributions of Markov chains with
general state space; see [1], [9], [10] (the results of [9] and [10] are also described in [11]). In [1]
and [9], the bounds for general Markov chains are expressed in terms of ergodicity coefficients
of the iterated transition kernel, which are difficult to compute for infinite state spaces. These
results were obtained using operator-theoretic and probabilistic methods. Here, we improve
upon such bounds and also prove new bounds which explicitly relate the sensitivity under
perturbation to geometric convergence estimates. Bounds of the latter kind have not previously
appeared in the discrete-time Markov chain literature. Much has been done to investigate the
relationship between the convergence rate and the sensitivity under perturbation for Markov
chains in continuous time; see [20] and references therein. In this paper, we extend the approach
to sensitivity analysis for Markov chains developed in [20] to the case of discrete-time chains.

The need for perturbation bounds for uniformly ergodic general Markov chains comes from
the fact that many practically important chains are uniformly ergodic. In the area of Markov
chain Monte Carlo (MCMC) methods, it has been shown that some special cases of the Gibbs
sampler [23], [24], the independence Hastings algorithm [16] and the Metropolis algorithm
[30] are uniformly ergodic general Markov chains. It is indeed important to study perturbations
for MCMC algorithms because running a Markov chain on a computer introduces an error
associated with finite-precision computation, so that, in fact, a perturbed chain is simulated
[25]. In the modeling context, transition probabilities of Markov chains are often not known
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exactly due to measurement errors, which necessitates the use of perturbation bounds to assess
the uncertainties in the model output. As a recent example, we mention the application of
perturbation bounds for Markov chains in bioinformatics [27].

The paper is organized as follows. Section 2 contains the necessary definitions and notation.
In Section 3, we give new perturbation bounds for Markov chains with general state space. In
Section 4, we discuss two approaches to bounding the speed of convergence in the case of finite
state space. Finally, in Section 5, we numerically compare different perturbation bounds. In
the appendix, we compare some perturbation bounds of Section 3 with the results obtained in
[1] and [9].

2. Preliminaries

Let N = {1, 2, . . .} and Z+ = {0, 1, 2, . . .}. We consider a Markov chain X = {Xn, n ∈ Z+}
on a measurable space (S, B), with transition kernel P(x, G). For a background on general
Markov chains and their convergence properties, see [19]. In this paper we deal with operators
defined by a kernel which is either a (Markov) transition kernel or a difference of two such
kernels. A kernel A(x, G) on (S, B) defines an operator, A, acting on a space, M, of finite
signed measures on B as follows:

(qA)(G) =
∫

S
q(dx)A(x, G), q ∈ M, G ∈ B.

If A(x, G) is a transition kernel, then we call A a transition operator. For a measure q ∈ M,
define the total variation norm by

‖q‖ = |q|(S),

that is, ‖q‖ is the total variation of q on S. This functional-analytic definition of total variation
is twice the quantity supG∈B |q(G)|, which is often used by probabilists. The corresponding
operator norm for A is

‖A‖ = sup
‖q‖=1

‖qA‖ = sup
x∈S

‖Ax‖, (2.1)

where Ax(G) = A(x, G), G ∈ B. Thus, ‖q‖ = 1 for a probability measure q, and ‖A‖ = 1
for a transition operator A.

We assume that X is uniformly ergodic with unique invariant measure π . By definition,
uniform ergodicity means that there exist positive constants ρ < 1 and C < ∞ such that, for
all x ∈ S,

‖exP
n − π‖ ≤ Cρn, n ∈ Z+, (2.2)

where ex is the probability measure concentrated at x. A classical bound of the form (2.2) is
obtained through minorization conditions [19, Chapter 16] (bounds of this type were used in
[16] and [30]). A new method of deriving uniform geometric bounds (using a drift condition)
was developed in [18].

For a probability measure p0, define pn = p0P
n (the distribution of X after n steps).

We approximate pn by the distribution of a Markov chain X̃ = {X̃n, n ∈ Z+} on (S, B);
P̃ denotes the transition operator of X̃ and p̃n denotes the distribution of X̃ after n steps. The
chain X is regarded as the unperturbed Markov chain, whereas X̃ is a perturbed Markov chain.
Perturbation bounds studied in this paper are upper bounds on the variation distance between
p̃n and pn.
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To obtain our perturbation bounds, we shall use the notion of the ergodicity coefficient of a
transition operator. For a transition operator A, define the ergodicity coefficient by

τ(A) := sup
q∈M0

‖qA‖ = 1
2 sup

x,y∈S
‖(ex − ey)A‖, (2.3)

where M0 = {q ∈ M : ‖q‖ = 1, q(S) = 0} [4], [5]. We have τ(A) ≤ 1 and, for transition
operators A1 and A2, the following submultiplicativity property holds:

τ(A1A2) ≤ τ(A1)τ (A2). (2.4)

If S is finite, then we can define a measure q on S by defining a vector q = (qi), where
qi = q({i}), i ∈ S (we regard vectors as row vectors). An operator A can be defined by the
matrix A = (aij ), where aij = (eiA)({j}), i, j ∈ S. To apply our sensitivity bounds to finite
chains, we must use the l1-norm for vectors (absolute entry sum) and the corresponding induced
norm for matrices (maximum absolute row sum); these norms are also denoted by ‖ · ‖, which
will cause no confusion. It is easily seen that ‖q‖ = ‖q‖ and ‖A‖ = ‖A‖. If A is a transition
operator then, using the notation τ(·) for matrices as well, we have

τ(A) = τ(A) := sup
‖v‖=1
ve�= 0

‖vA‖ = 1
2 max

i,j∈S
‖(ei − ej )A‖, (2.5)

where the supremum is taken over real vectors v; here e is the row vector of 1s, ei is the vector
whose ith entry is equal to 1 with all other entries equal to 0, and ‘�’ denotes transpose. The
quantity τ(A) is the l1-norm ergodicity coefficient of the matrix A [26]. It should be noted that
(2.5) can be straightforwardly generalized to the case of countably infinite state space (in this
connection, see [4] and [5]).

In what follows, �x� is the largest integer less than or equal to x and 	x
 is the smallest
integer greater than or equal to x.

3. Perturbation bounds and uniform ergodicity

In this section, we prove perturbation bounds which relate the sensitivity of X to the speed
of its convergence in the case of general state space. Our primary goal is to provide bounds in
terms of C and ρ under the condition that (2.2) holds, but we also give several bounds in terms
of τm := τ(P m), where m ∈ N is such that τm < 1. It should be noted that the quantity τm

gauges the speed of convergence to stationarity through the inequalities

‖pn − π‖ ≤ τ
�n/m�
m ‖p0 − π‖ ≤ 2τ

�n/m�
m , n ∈ N,

which follow from the definition of τ(·), (2.4), and the fact that τ(P i) ≤ 1 for all i ∈ Z+.

Theorem 3.1. If (2.2) holds then C ≥ 1 and, for zn := p̃n − pn and E := P̃ − P , we have

‖zn‖ ≤

⎧⎪⎨
⎪⎩

‖z0‖ + n‖E‖, n ≤ n̂,

Cρn‖z0‖ +
(

n̂ + C
ρn̂ − ρn

1 − ρ

)
‖E‖, n ≥ n̂ + 1,

(3.1)

where n̂ = 	logρ C−1
.
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Proof. For each n ∈ N,

zn = z0P
n +

n−1∑
i=0

p̃iEP n−i−1, (3.2)

which easily follows by induction. Since E(x, S) = 0 for all x ∈ S, we have (p̃iE)(S) = 0
for all i ∈ Z+. This, together with the inequality

‖p̃iEP n−i−1‖ ≤ ‖E‖
∥∥∥∥ p̃iE

‖p̃iE‖P n−i−1
∥∥∥∥ for ‖p̃iE‖ �= 0,

gives ‖p̃iEP n−i−1‖ ≤ ‖E‖τ(P n−i−1). Similarly, ‖z0P
n‖ ≤ ‖z0‖τ(P n). From (3.2), using

the above relations we obtain

‖zn‖ ≤ ‖z0‖τ(P n) + ‖E‖
n−1∑
i=0

τ(P i), n ∈ N. (3.3)

Since τ(P n) ≤ 1, we obtain

n−1∑
i=0

τ(P i) ≤ n, n ∈ N. (3.4)

From (2.2), (2.3), and the triangle inequality, we deduce that

τ(P n) ≤ sup
x∈S

‖exP
n − π‖ ≤ Cρn, n ∈ Z+. (3.5)

The relations (3.5) with n = 0 and the equality τ(P 0) = 1 imply that C ≥ 1. Noting the fact
that Cρn ≤ 1 for n ≥ n̂, and using (2.2), (3.4), and (3.5), we obtain

n−1∑
i=0

τ(P i) ≤ n̂ + C

n−1∑
i=n̂

ρi

= n̂ + Cρn̂
n−n̂−1∑

i=0

ρi

= n̂ + Cρn̂ 1 − ρn−n̂

1 − ρ
, n ≥ n̂ + 1. (3.6)

This, together with (2.2) and (3.3)–(3.5), proves (3.1).

Corollary 3.1. In the setting of Theorem 3.1,

sup
n∈N

‖zn‖ ≤ ‖z0‖ +
(

n̂ + Cρn̂

1 − ρ

)
‖E‖. (3.7)

If, in addition, the chain X̃ has an invariant measure, π̃ , then

‖π̃ − π‖ ≤
(

n̂ + Cρn̂

1 − ρ

)
‖E‖. (3.8)



Sensitivity and convergence of Markov chains 1007

Proof. The bound (3.7) follows directly from (3.1). Setting p0 = π and p̃0 = π̃ , and taking
the limit as n → ∞ in (3.3), we obtain

‖π̃ − π‖ ≤ ‖E‖
∞∑
i=0

τ(P i).

This relation and (3.6) prove (3.8).

The inequality (3.3) also allows us to obtain perturbation bounds in terms of the ergodicity
coefficient of the iterated transition kernel. Such bounds are provided by the following theorem.

Theorem 3.2. If (2.2) holds then there exists a positive integer m such that τm < 1 and

sup
k∈N

‖zkm‖ ≤ τm‖z0‖ + ‖P̃ m − P m‖
1 − τm

, (3.9)

‖zn‖ ≤

⎧⎪⎨
⎪⎩

‖z0‖ + max
0<i<m

‖P̃ i − P i‖, n < m,

τm

(
‖z0‖ + max

0<i<m
‖P̃ i − P i‖

)
+ ‖P̃ m − P m‖

1 − τm

, n ≥ m.
(3.10)

If, in addition, the chain X̃ has an invariant measure, π̃ , then

‖π̃ − π‖ ≤ ‖P̃ m − P m‖
1 − τm

. (3.11)

Proof. The existence of a positive integer m, such that τm < 1, follows from (3.5). In the
case when τ1 < 1, from (3.3) we obtain

sup
n∈N

‖zn‖ ≤ τ1‖z0‖ + ‖E‖
1 − τ1

;

if π̃ is an invariant measure of X̃, then

‖π̃ − π‖ ≤ ‖E‖
1 − τ1

.

These inequalities, applied to the m-skeletons of X and X̃, give (3.9) and (3.11). For every
k ∈ N and every integer i such that 1 ≤ i ≤ m − 1, we obtain

zmk+i = p̃i(P̃
mk − P mk) + ziP

mk;
therefore,

‖zmk+i‖ ≤ ‖P̃ mk − P mk‖ + ‖zi‖τ k
m. (3.12)

By (2.1), we have

‖P̃ mk − P mk‖ = sup
x∈S

‖ex(P̃
mk − P mk)‖ = sup

x∈S
‖z(x)

mk‖, (3.13)

where z
(x)
mk is the value of zmk corresponding to the case p̃0 = p0 = ex . Since zn = z0P

n +
p̃0(P̃

n − P n),
‖zn‖ ≤ ‖z0‖ + max

0<i<m
‖P̃ i − P i‖, n < m. (3.14)

Combining (3.9) and (3.12)–(3.14), we obtain (3.10).
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The following theorem gives an alternative method of obtaining perturbation bounds in terms
of τm.

Theorem 3.3. For an m ∈ N such that τm < 1, the following bound holds:

‖zn‖ ≤ τ
�n/m�
m

(
‖z0‖ + max

0<i<m
‖P̃ i − P i‖

)
+ 1 − τ

�n/m�
m

1 − τm

‖P̃ m − P m‖, n ∈ N. (3.15)

Proof. If n < m, then (3.15) reduces to (3.14). Suppose now that n ≥ m. We obtain

zn = p̃n−mP̃ m − pn−mP m = (p̃n−m − pn−m)P m + pn−m(P m − P̃ m);
therefore,

‖zn‖ ≤ ‖zn−m‖τm + ‖P̃ m − P m‖.
Applying this relation successively to ‖zn‖, ‖zn−m‖, . . . , ‖zn−m(�n/m�−1)‖, and using (3.14) to
bound ‖zn−m�n/m�‖, we obtain

‖zn‖ ≤ τ
�n/m�
m

(
‖z0‖ + max

0<i<m
‖P̃ i − P i‖

)
+ (τ

�n/m�−1
m + τ

�n/m�−2
m + · · · + 1)‖P̃ m − P m‖,

which completes the proof.

Corollary 3.2. For an m ∈ N such that τm < 1, the following bound holds:

sup
n∈N

‖zn‖ ≤ sup
n∈N

τ
�n/m�
m ‖z0‖ + m‖E‖

1 − τm

. (3.16)

Proof. We have
max

0<i≤m
‖P̃ m − P m‖ ≤ m‖E‖, (3.17)

which follows by induction from the relation

P̃ i − P i = P̃ P̃ i−1 − PP i−1 = P̃ (P̃ i−1 − P i−1) + EP i−1, i ≥ 1.

From (3.15) and (3.17), we obtain

‖zn‖ ≤ τ
�n/m�
m ‖z0‖ + m‖E‖1 − τ

�n/m�+1
m

1 − τm

, n ∈ N,

which implies (3.16).

Remark 3.1. Theorem 3.3 allows us to obtain the bounds (3.10) and (3.11) as corollaries.

4. The case of finite state space

In this section, we assume that S = {1, . . . , N}, 2 ≤ N < ∞. Thus, X is a finite Markov
chain with transition probability matrix P . Denote the distribution vector of Xn by pn; let π

be the stationary distribution of X. Note that, for finite Markov chains, uniform ergodicity is
equivalent to ergodicity (convergence of all distributions to a unique limiting distribution as
n → ∞).

Since P is the transition matrix of a Markov chain, one of its eigenvalues is equal to 1, and
the absolute values of all nonunit eigenvalues do not exceed 1. Uniqueness of the invariant
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distribution implies that the multiplicity of the unit eigenvalue of P is equal to 1. Denote by
βj , j = 1, . . . , M , the distinct eigenvalues of P . Choose β1 = 1 and let β = max2≤j≤M |βj |.
Our assumption that X is ergodic is equivalent to having β < 1.

Suppose that P is diagonalizable. Let W be a nonsingular matrix such that P = W−1BW ,
where B is diagonal. It is clear that the rows of W , denoted by wi , are left eigenvectors of P , and
that B consists of the eigenvalues of P . For each βj , define Bj = {k ∈ S : wkP = βjP }. Set
κ(W ) = ‖W‖‖W−1‖. The following theorem is the discrete-time counterpart of Theorem 3.1
of [20].

Theorem 4.1. If P is diagonalizable then, for all distributions p0,

‖pn − π‖ ≤ Dβn, n ∈ Z+, (4.1)

where

D = max
i∈S

M∑
j=2

∥∥∥∥ ∑
k∈Bj

w
(−1)
ik wk

∥∥∥∥ = max
i∈S

M∑
j=2

∥∥∥∥ei

∏
k �=j (P − βkI )∏
k �=j (βj − βk)

∥∥∥∥,

the w
(−1)
ik are the entries of W−1, and I denotes the identity matrix. Also,

D ≤ κ(W ) − 1, (4.2)

and equality is attained if all eigenvalues of P are distinct and ‖wi‖ = 1, i ∈ S. In (4.2), the
scaling ‖wi‖ = 1 for all i ∈ S minimizes κ(W ).

Proof. The theorem can be proved in a similar way to Theorem 3.1 of [20], using the
following expression [17, Chapter 7]:

P n =
M∑

j=1

∏
k �=j (P − βkI )∏
k �=j (βj − βk)

βn
j , n ∈ Z+.

Theorem 4.1 demonstrates the connection between the rate of convergence of X to stationar-
ity and the sensitivity of the eigenvalues of P under perturbation since, for every matrix P +F

with an eigenvalue ζ , the following inequality holds [7, Chapter 6]:

min
1≤j≤M

|βj − ζ | ≤ κ(W )‖F‖. (4.3)

If P +F is the transition matrix of X̃, then (4.3) can be used to study different spectrum-related
properties of X̃; see [20] for a discussion in the case of continuous time. But, since (4.3) holds
for arbitrary F , it can be applied in situations where perturbations of P are not structured. In
particular, this is the case when numerical methods are used for computing the eigenvalues of P .
As is well known, knowledge of the eigenvalues and eigenvectors of a diagonalizable matrix
allows us to calculate the matrix powers in an effective way through the spectral decomposition,
and finding P n is of course important.

The following theorem provides a convergence bound for irreducible chains. Supposing that
X is irreducible (P is not necessarily diagonalizable), define the matrix P̄ = (p̄ij ) by p̄ij =
pjiπj /πi , where pij are the entries of P and πi are the entries of π . Let θi, i = 1, . . . , N , be
the eigenvalues of the stochastic matrix P P̄ . Put θ1 = 1 and θ = max2≤i≤N θi (the eigenvalues
θi are all real and nonnegative [6]). The following theorem is implied by Theorem 2.7 of [6].
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Theorem 4.2. For all p0,

‖pn − π‖ ≤ Gθn/2, n ∈ Z+, (4.4)

where

G =
√

max
i∈S

1

πi

− 1.

Remark 4.1. The matrix P P̄ is the multiplicative reversibilization of P ; it can be shown that
sometimes it can be reducible, in which case θ = 1. To overcome this difficulty, we may use
the additive reversibilization, (P + P̄ )/2, which is irreducible and aperiodic if P is; see [6].

The chain X is reversible if it is irreducible and the detailed balance conditions

πipij = πjpji

are satisfied for all i, j ∈ S. The detailed balance conditions are equivalent to P̄ = P . Thus, for
reversible chains,

√
θ = β. Many practically important chains are reversible; as an example,

we mention MCMC algorithms for a finite state space [8], [28]. For a reversible chain X, there
exists a connection between the rate of convergence to stationarity given by Theorem 4.2, the
stability of the eigenvalues of the transition matrix, and the closeness of the latter to being
symmetric. See [20] for a discussion of these issues in the case of continuous time; the case of
discrete time can be treated in a similar manner.

Remark 4.2. The exact values of β or θ may not be easily available, and it is desirable to have
bounds on these quantities. For different approaches, see [3], [6], [28].

It is interesting to note that there exists a class of irreducible, aperiodic Markov chain for
which sensitivity bounds have been derived with ‘condition number’ depending only on the
cardinality of the state space. These are the so-called Markov chains whose transition matrix
has large exponent (another term for ‘exponent’ is ‘primitivity index’) [15]. But many chains
that model real-world phenomena do not belong to this class; e.g. if at least one diagonal
element of an irreducible transition matrix is positive, then the matrix does not have large
exponent (see [7, Chapter 8]).

5. Numerical results

In this section, we provide some examples of the use of the perturbation bounds of Section 3
and the convergence bounds of Section 4. We shall work with the following two matrices which
arise in the context of ion channel modeling [22, p. 54]:

P1 =
⎛
⎝0.9841 0.0119 0.0040

0.3178 0.5764 0.1058
0.0126 0.0349 0.9525

⎞
⎠ , P2 =

⎛
⎝0.999 0.001 0

0.025 0.95 0.025
0 0.03 0.97

⎞
⎠ .

The matrix P1 has been slightly modified in order to make the row sums equal to 1. We have
τ(P1) ≈ 0.972 and τ(P2) ≈ 0.999. It is also important to note that P2 is reversible.
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For the chain X with transition matrix P such that τ(P ) < 1, consider the following
quantities:

B1(P ) = 1

1 − τ(P )
,

B2(P ) = n̂2 + Dβn̂2

1 − β
, n̂2 = 	logβ D−1
,

B3(P ) = n̂3 + Gθn̂3/2

1 − √
θ

, n̂3 = 	log√
θ G−1
.

Let zn = p̃n −pn, where p̃n is the distribution of X̃ after n steps. Also, let E = P̃ −P , where
P̃ is the transition matrix of X̃. In this section, we consider the case where ‖z0‖ = 0. In this
case, for i = 1, 2, 3, we obtain

sup
n∈N

‖zn‖ ≤ Bi(P )‖E‖.

The bound for i = 1 can be obtained either from (3.9) or from (3.16) by setting m = 1; the
bounds for i = 2 and i = 3 are obtained by combining (3.7) with (4.1) and (3.7) with (4.4),
respectively. We have

B1(P1) ≈ 35.088, B2(P1) ≈ 38.277, B3(P1) ≈ 58.056,

B1(P2) ≈ 1000.000, B2(P2) ≈ 187.507, B3(P2) ≈ 233.652.

We see that the bounds in terms of B2(·) and B3(·) for P1 are worse than the one in terms of
B1(·), and that they are better for P2. Now we shall show that a small change in P may cause
a considerable change in the absolute and relative magnitudes of the quantities Bi(·). Consider
the matrix

P3 =
⎛
⎝0.9841 0.0119 0.0040

0.3178 0.5764 0.1058
0.0006 0.0349 0.9645

⎞
⎠

obtained from P1 by a slight modification in the third row. This modification leads to an increase
in the value of the ergodicity coefficient: τ(P3) ≈ 0.984. We have

B1(P3) ≈ 60.606, B2(P3) ≈ 50.120, B3(P3) ≈ 79.723.

Thus, for P3, the bound in terms of B2(·) is better than the one in terms of B1(·). Notice that,
for all of the matrices P1, P2, and P3, the B2(·)-bound is sharper than the B3(·)-bound.

In the bound (3.16), of which the B1(·)-bound is a special case, we may choose different
values of m. Below we show that an increase in m may lead to a better perturbation bound. Let

E =
⎛
⎝0.0001 −0.0001 0

0.0003 0 −0.0003
0 0 0

⎞
⎠ ,

and define

F1(P , E, m) = (m − 1)‖E‖ + ‖P̃ m − P m‖
1 − τ(P m)

,

F2(P , E, m) = m‖E‖
1 − τ(P m)

.
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Table 1: Numerical experiments.

m F1(P2, E, m) F2(P2, E, m)

3 0.339 0.352
5 0.239 0.257

10 0.143 0.165
20 0.089 0.113
50 0.068 0.087
70 0.072 0.089

100 0.084 0.095
150 0.110 0.113
200 0.138 0.136
300 0.196 0.187

It follows from (3.10), (3.16), and (3.17) that, for i = 1, 2,

sup
n∈N

‖zn‖ ≤ Fi(P , E, m).

The numerical values for P = P2 and E as above are given in Table 1. We also have

B1(P2)‖E‖ ≈ 0.600, B2(P2)‖E‖ ≈ 0.113, B3(P2)‖E‖ ≈ 0.140.

Thus, in our example the Fi(·, ·, m)-bounds with m of order ten are sharper than the
Bi(·)-bounds for i = 2, 3, and they are less sharp for small and large m.

The bounds considered above do not require computation of quantities of the type

max
0<i<m

‖P̃ i − P i‖,

as do the bounds (3.10) and (3.15). The latter bounds are more difficult to compute, but they
produce sharper estimates of supn∈N ‖zn‖. Again, optimal results may correspond to relatively
large m.

Appendix A. Anisimov’s and Kartashov’s results

Here we briefly compare some results of Section 3 with the corresponding results ofAnisimov
[1] and Kartashov [9]. In [1], Anisimov obtained perturbation bounds for inhomogeneous
Markov processes in discrete and continuous time, and Kartashov in [9] studied so-called
strongly stable Markov chains, a wider class than the uniformly ergodic chains studied in this
paper. It should also be noted that Kartashov considered a more general class of norm than the
total variation norm that we use here. We shall show that our results improve upon the bounds
derived in [1] and [9] for uniformly ergodic Markov chains. In fact, Anisimov and Kartashov
obtained their perturbation bounds for quantities of the type ‖P̃ n − P n‖. Here, we treat the
case of ‖z0‖ = 0; in this case,

‖zn‖ ≤ ‖P̃ n − P n‖.
Theorem 2 of [1] gave the bound

‖zn‖ ≤ 1 − τ
�n/m�+1
m

1 − τm

max
0<i≤m

‖P̃ i − P i‖. (A.1)
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It is easy to see that our bound (3.15) (for ‖z0‖ = 0) is sharper than (A.1). Also, our derivation
of (3.15) is somewhat more straightforward than Anisimov’s proof of (A.1). Lemma 1 of [1]
gave a bound which in our case reduces to (3.17); the combination of Lemma 1 and the uniform
bound implied by (A.1) coincides with our inequality (3.16). Results similar to (3.9)–(3.11)
were not considered in [1].

The bound [9, Equation (16)], for

τm + ‖P̃ m − P m‖ < 1, (A.2)

gives

sup
k∈N

‖zkm‖ ≤ ‖P̃ m − P m‖
1 − τm − ‖P̃ m − P m‖ ,

which is clearly less sharp than our bound (3.9). The bound [9, Equation (17)] differs from
our inequality (3.10) in a similar way (note that Kartashov’s bound [9, Equation (17)] holds for
n ≥ m in our notation; this follows directly from the proof of [9, Equation (17)], which is based
on an analogue of (3.12)). Kartashov’s bound [9, Equation (14)] for the stationary distribution
holds only if (A.2) is satisfied, and gives

‖π̃ − π‖ ≤ ‖P̃ m − P m‖
1 − τm − ‖P̃ m − P m‖ ,

which is less sharp than our bound (3.11). Corollary 2 of [1], for

τm + max
0<i≤m

‖P̃ i − P i‖ < 1,

gives the bound
‖π̃ − π‖ ≤ (1 − τm)−1 max

0<i≤m
‖P̃ i − P i‖,

which is also less sharp than (3.11).
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