Understanding Surgical and Traumatic Coagulopathy: Computation Meets Experiment

Alexander Y. Mitrophanov, PhD

Senior Statistician Frederick National Laboratory for Cancer Research National Institutes of Health Frederick, MD mitrophanovay@yahoo.com

Johns Hopkins University Department of Anesthesiology and Critical Care Medicine Grand Rounds 8 October 2020

Surgical and traumatic coagulopathy

Surgical and traumatic coagulopathy

Coagulopathy is multifactorial

Campbell et al., J Trauma Acute Care Surg (2015)

Thrombin generation in vitro

Normal thrombin generation

Thrombin \rightarrow fibrin \rightarrow blood clot

Thrombin generation in vitro

Thrombin \rightarrow fibrin \rightarrow blood clot

Therapeutic solutions for diverse scenarios

Thrombin \rightarrow fibrin \rightarrow blood clot

Thrombin-generation quantification

Mitrophanov et al., J Trauma (2012)

CT: clotting (lag) timeMS: maximum slopePH: thrombin peak heightPH: peak heightAUC: area under the curvePH: peak height

Large system: intuition alone is not enough

- How can we anticipate the effects of coagulopathy on thrombin generation?
- How do we know what coagulation factors are key?

Blood coagulation system

Blood coagulation system

Computational kinetic modeling

C(t) = species concentration; dC(t)/dt = (production rate) - (depletion rate)

In vitro experiments (plasma or whole blood)

Computational kinetic modeling

C(t) = species concentration;dC(t)/dt = (production rate)- (depletion rate)

Simulations can reproduce experimental results

Undiluted plasma

Mitrophanov et al., Anesth Analg (2016)

Simulations can reproduce experimental results

Dilution reduces peak height

Mitrophanov et al., Anesth Analg (2016)

Hypothermia: simulated effects for the "average" subject

Mitrophanov et al., Anesth Analg (2013)

Hypothermia: simulated effects for the "average" subject

37 °C (normal) prediction 33 °C prediction range 33 °C prediction quartiles 33 °C prediction median

Peak height practically unchanged

Mitrophanov et al., Anesth Analg (2013)

Hypothermia: experimental validation

Undiluted 3-fold dilution 5-fold dilution Dashed: 15 nM thrombomodulin

Mitrophanov et al., Anesth Analg (2020)

Hypothermia: experimental validation

Undiluted 3-fold dilution 5-fold dilution Dashed: 15 nM thrombomodulin

Hypothermia inhibits anticoagulant mechanisms

Mitrophanov et al., Anesth Analg (2020)

FVIIa supplementation skews thrombin generation

Simulations for the "average" subject*

(r)FVIIa = (recombinant) activated Factor VII

*Mitrophanov et al., J Trauma (2012)

FVIIa supplementation skews thrombin generation

(r)FVIIa = (recombinant) activated Factor VII

*Mitrophanov et al., *J Trauma* (2012)

**Mitrophanov et al., Anesth Analg (2016)

PCC-AT: thrombin-generation normalization

Simulations for the "average" subject*

(r)FVIIa = (recombinant) activated Factor VII PCC-FVII = FII + FIX + FX + FVII PCC-AT = FII + FIX + FX + antithrombin (AT)

*Mitrophanov et al., *J Trauma* (2012)

PCC-AT: thrombin-generation normalization

(r)FVIIa = (recombinant) activated Factor VII
PCC-FVII = FII + FIX + FX + FVII
PCC-AT = FII + FIX + FX + antithrombin (AT)

*Mitrophanov et al., *J Trauma* (2012)

**Mitrophanov et al., Anesth Analg (2016)

Fibrin generation: simulations and validation

Fibrin generation: simulations and validation

Fibrinogen (Fg) + PCC-AT restore normal thrombin and fibrin generation in diluted plasma

Model simulations for the "average" subject

Fibrin

Dilution: 3-fold

Fibrinogen (Fg) + PCC-AT restore normal thrombin and fibrin generation in diluted plasma

Model simulations for the "average" subject

Dilution: 3-fold

Adding flow: whole blood in vitro

Microfluidic device

Govindarajan et al., Biophys J (2016)

Adding flow: whole blood in vitro

Microfluidic device

Fibrin generation: simulation and experiment

Platelet deposition: similar

Govindarajan et al., Biophys J (2016)

Coagulation factors + fibrinogen enhance coagulation in diluted blood

Clot resistance to flow (the flow slows down accordingly)

Govindarajan et al., Biophys J (2016)

Antithrombin improves PCC effects in a porcine model of traumatic coagulopathy

Grottke et al., Anesthesiology (2019)

CONCLUSIONS

 Computational modeling can effectively guide experimentation in blood-coagulation research

• Thrombin generation may be normalized by a few pro/anti-coagulant factors (**balanced intervention**)

• Additional supplementation of fibrinogen may be useful

ACKNOWLEDGEMENTS

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. DoD Biotechnology HPC Software Applications Institute (BHSAI)

> Vijay Govindarajan (BHSAI) Jaques Reifman (BHSAI) Frits Rosendaal (Leiden) Fania Szlam (Emory) Roman Sniecinski (Emory) Jerrold Levy (Duke)

Funding

U.S. Army Medical Research and Development Command DoD High Performance Computing Modernization Program