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1. What are the rules that govern the dynamics of genetic circuits
involving protein—protein interactions?

2. What are the functional consequences of structural diversity in
genetic circuits of closely related bacterial species?
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Mathematical modeling of signal transduction mechanisms
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Mathematical modeling of signal transduction mechanisms

Advantages of modeling
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Different signals activate distinct response networks
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What are the functional implications of different modes
of signal integration?
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Two-component systems regulating polymyxin B resistance
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Solution [A], [B] as functions of time




Pathway activation data can be used to fit and test
the pathway mathematical models
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Pathway activation data can be used to fit and test
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Connector-mediated pathway promotes signal amplification
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Connector-mediated pathway promotes signal amplification
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Connector-mediated pathway promotes signal amplification
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Connector-mediated pathway promotes heightened
polymyxin B resistance
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Connector-mediated pathway exhibits expression delays
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Connector-mediated pathway exhibits expression delays
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Feedforward connector loop resembles the ubiquitous
feedforward loop
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Feedforward connector loop promotes signal amplification

1000 ¢
o Connector pathway
= 100 F
©
c FCL
Qo
S 10t
©
£
<
zZ
4 1t
S

01 L L 1 1 1 L L
1.4 1.2 1 0.8 0.6 0.4 0.2
[PhoP-P] (Arbitrary units)
low Mg?* low Mg low Mg?*
e : =
y \ j
PhoP Jp PmrA)p PhoP [p PmrAjp PhoP /P PmrAlp

—7 —
‘ ipmrD —v { _lpmrD _r
pbgP ¥ pbgP _Y pbgP

Direct regulation Feedforward connector loop (FCL) Connector-mediated pathway



Feedforward connector loop promotes signal amplification
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FCL and FFL demonstrate fast activation
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FCL exhibits larger deactivation delays than FFL
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What is the role of the direct branch of regulation in FCL
and FFL?
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FCL and FFL display higher output levels than their cascade

counterparts
o7 FFL
0.6
3| Mathematical result:
> . .
2 o4 having two regulation
=1 B
2os _ branches leads to higher
o FCL —no direct branch
02 P output levels
0.1 _.,‘,\—::;:I:::: """" " FFL - no direct branch
Jzzzoilo-t . J .
0 5 10 15 20 25 30

Time (min)

low Mg?* )
signal

v

PhoP P PmrA p Y

= ey

Feedforward connector loop (FCL) Feedforward loop (FFL)



In vivo dynamics of regulatory architectures
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In vivo dynamics of regulatory architectures
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Connector-mediated regulation is an emerging paradigm in
bacterial gene expression control

Salmonella enterica
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Connector-mediated regulation is an emerging paradigm in
bacterial gene expression control

Salmonella enterica Escherichia coli
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Conclusions
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Properties of induction ratios, activation/deactivation timing, and
response levels are determined by the structure of regulatory
circuits

Connector-mediated regulatory mechanisms confer special
functional features on the regulatory circuits

Different regulatory architectures may contribute to different
lifestyles of bacterial species
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Strong second input speeds up activation and slows down
deactivation of the connector-mediated pathway
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Shape of a dynamic response curve determines the ability
of Salmonella enterica to cause disease
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