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1. What are the rules that govern the dynamics of genetic circuits

involving protein–protein interactions?

2. What are the functional consequences of structural diversity in 

genetic circuits of closely related bacterial species?
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• Explanation and prediction 

of quantitative effects

• General results difficult to 

obtain experimentally 

• Means to modify system 

behavior in desirable ways

Mathematical modeling of signal transduction mechanisms
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Connector-mediated pathwayDirect regulation circuit

Yersinia pestis

Different species of enterics use distinct architectures to 

activate pbgP by low Mg2+

• How does the circuit architecture affect the induction ratios?       

• What is the connection between the circuit architecture and 
response timing?

• How does the circuit architecture influence the response levels?
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Solution [A], [B] as functions of time
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feedforward loop

Klebsiella pneumoniae



0.1

1

100

10

1000

[PhoP-P]  (Arbitrary units)

m
R

N
A

 i
n

d
u

c
ti

o
n

 r
a

ti
o

Direct regulation Connector-mediated pathway

Feedforward connector loop promotes signal amplification

Feedforward connector loop (FCL)



0.1

1

100

10

1000

[PhoP-P]  (Arbitrary units)

m
R

N
A

 i
n

d
u

c
ti

o
n

 r
a

ti
o

Direct regulation Connector-mediated pathway

Feedforward connector loop promotes signal amplification

Feedforward connector loop (FCL)

Mathematical results: 

(a) Signal amplification occurs 

for the FCL for sufficiently 

high signal levels

(b) Signal amplification for the 

FCL is less pronounced 

than for the connector-

mediated pathway
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Mathematical result: 

having two regulation 

branches leads to higher 

output levels

FCL and FFL display higher output levels than their cascade 

counterparts

Feedforward connector loop (FCL) Feedforward loop (FFL)

FFL

FCL

FFL – no direct branch

FCL – no direct branch
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• Properties of induction ratios, activation/deactivation timing, and 
response levels are determined by the structure of regulatory 
circuits  

• Connector-mediated regulatory mechanisms confer special 
functional features on the regulatory circuits

• Different regulatory architectures may contribute to different 
lifestyles of bacterial species 

Yersinia pestis Salmonella enterica Klebsiella pneumoniae

Conclusions
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deactivation of the connector-mediated pathway
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Strong activation of second input increases deactivation delays
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Shape of a dynamic response curve determines the ability 

of Salmonella enterica to cause disease

(Shin et al., Science 2006)

wild type 

mutant

PhoP: major regulator 

of S. enterica virulence

S. enterica infection 

in a mouse model:


