My Journey Through Computational Biology

Alexander (Alex) Mitrophanov, PhD
Senior Statistician
FNLCR/NIH/DMS/BRM i

ABCS "Meet and Greet" 4 June 2021

Once upon a time in Siberia...

"We all began as something else..." (The Chronicles of Riddick)

"We all began as something else..." (The Chronicles of Riddick)

Mathematics of system stability

"We all began as something else..." (The Chronicles of Riddick)

Mathematics of system stability

Mathematics of system stability

The Purifier

How can we quantify/predict stability?

Stability, chemical kinetics, and Markov chains

$$
\mathrm{A}+\mathrm{B} \underset{k_{-}}{\stackrel{k_{+}}{\leftrightarrows}} \mathrm{AB}
$$

Parameters

- initial concentrations ("Type 1")
- rate constants $k_{+}, k_{\text {- ("Type 2") }}$

Stability, chemical kinetics, and Markov chains

$$
\mathrm{A}+\mathrm{B} \underset{k_{-}}{\stackrel{k_{+}}{\leftrightarrows}} \mathrm{AB}
$$

Parameters

- initial concentrations ("Type 1")
- rate constants k_{+}, k_{-}("Type 2")

| Type-1
 stability | quantification |
| :---: | :---: |$\xrightarrow{\text { Main result! }} \Rightarrow$| Type-2 |
| :---: |
| stability |

Stability, chemical kinetics, and Markov chains

$A+B \underset{k_{-}}{\stackrel{k_{+}}{\leftrightarrows}} A B$

Parameters

- initial concentrations ("Type 1")
- rate constants k_{+}, k_{-}("Type 2")

Markov chain: molecular interconversions

Stability, chemical kinetics, and Markov chains

Parameters

- initial concentrations ("Type 1")
- rate constants k_{+}, k_{-}("Type 2")

Markov chain: molecular interconversions

states
(species)
transitions (reactions)
$\mathbf{Q}=\left(q_{i j}\right)$
transition rate matrix (rate constants)

$$
\mathbf{p}(t)=\left(p_{i}(t)\right)
$$

state probability vector

$$
d \mathbf{p}(t) / d t=\mathbf{p}(t) \mathbf{Q}
$$

governing equation
(Kolmogorov differential equation)

Recent applications of the theory

DOI 10.1007/s1 $1222-014-9521-x$

Bernoulli 24(4A), 2018, 2610-
https://doi.org/10.3150/17-BEJ

Noisy Monte Carlo:

 with approximate trP. Alquier • N. Friel • R. Everi

Perturbation th

 via WassersteiStatistics and Computing
https://doi.org/10.1007/s11222-018-9817-3

DANIEL RUDOLF ${ }^{1}$ and N

Informed sub-sampling MCMC: datasets

Statistics and algorithms

Florian Maire ${ }^{1,2} \cdot$ Nial Friel $^{1,2} \cdot$ Pierre Alquier ${ }^{3}$ probabilities of Markov chains ar ful and flexible bounds on the dis them satisfies a Wasserstein ergod mate Markov chain Monte Carlo based on Lyapunov functions, we assumptions. In an autoregressive ory by showing quantitative estim Metropolis-Hastings and stochasti

Received: 26 June 2017 / Accepted: 4 June 2018
© Springer Science+Business Media, LLC, part of Springer Natu

Abstract

Keywords: big data; Markov chain

Recent applications of the theory

Perturbation bounds for quantum Markov processes and their fi
 PRL 116, 020502 (2016)
 Artificial quantum
 Quantum physics

temperature of a quantum bath th: state $\frac{e^{-H / T}}{\left.\text { TT(} e^{-H / T}\right)}$ wit algorithm. For a an engineered t thermodynamica we discuss how a DOI: 10.1103/Pr
Quantum Ma quantum statistic: evolution of some as a quantum Ma

Renormalizing Entanglen

Stephan Waeldchen, ${ }^{1}$ Janina Gertis, ${ }^{1}$ Earl Center for Complex Quantum Systems, Freie ent of Physics and Astronomy, University of S (Received 2 May 2015; publishe

Entanglement distillation refers to the task of transformi fewer highly entangled ones. It is a core ingredient in qua transmit entanglement over arbitrary distances in order t Usually, it is assumed that the initial entangled pairs are ide uncorrelated with each other, an assumption that might i generation process involving memory channels. Here, we i ment distillation in the presence of natural correlations aris bring together ideas from condensed-matter physics-ideas and operators-with those of local entanglement manipulat correction. We identify meaningful parameter regions for

Response Operators for Markov \mathbf{P} State Space: Radius of Convergen Response Theory for Axiom A Sys

Valerio Lucarini ${ }^{1,2}$

Climate science

Received: 8 July 2015 / Accepted: 24 October 2015 / Publi © The Author(s) 2015. This article is published with open

Abstract Using straightforward linear algebra w impact of small perturbations to finite state Ma for studying empirically constructed-e.g. from of model simulations-finite state approximation results concerning the convergence of the statistica

Rough parameter dependence in clir the role of Ruelle-Pollicott resonanc

Mickaël David Chekroun, J. David Neelin, Dmitri Kondrashov, James C. McWillia
Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, Ur
Contributed by James C. McWilliams, November 22, 2013 (sent for review August 9, 2013)

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin g-term model statistics remain unclear. ws in the atmosphere and oceans expatterns. These patterns, while evolvifest characteristic frequencies across a from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them-as filtered through an observable of the system-is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap-defined as the distance between the subdominant RP resonance and the unit circle-plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency vari-
tatistics (and of loc hold in the absence stochastic systems, (11), but it is still a interval over which mixing properties. C (e.g., quadratic) or many highly local va interval-to occur a
To help us under expect one type of b this problem in a th spectral theory of dy is illustrated on an E of intermediate com of coupled partial d different degrees of different regimes. T power spectrum to licott (RP) resonan the usefulness of

Recent applications of the theory

J Stat Phys (2016) 162:312-333
DOI 10.1007/s $10955-015-1409-4$

Response

State Spas

Biology??

dependence in clir Pollicott resonanc

Response

- Molecular dynamics simulations
- Ion channels

Valerio Lucar

- General biochemical kinetics
and Institute of Geophysics and Planetary Physics, Ur 2013 (sent for review August 9, 2013)

Received: 8 July 2015 / Accepted: 24 October 2015 / Publi © The Author(s) 2015. This article is published with open

Abstract Using straightforward linear algebra w impact of small perturbations to finite state Ma for studying empirically constructed-e.g. from of model simulations-finite state approximation results concerning the convergence of the statistica
\qquad
dynamical systems, the associated low frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them-as filtered through an observable of the system-is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap-defined as the distance between the subdominant RP resonance and the unit circle-plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency vari-
countered in climate anisms at the origin tistics remain unclear. phere and oceans expatterns, while evolvc frequencies across a al through interdecaaotic and dissipative
statistics (and of loc hold in the absence stochastic systems, (11), but it is still a interval over which mixing properties. C (e.g., quadratic) or many highly local va interval-to occur a
To help us under expect one type of b this problem in a th spectral theory of dy is illustrated on an E of intermediate com of coupled partial d different degrees of different regimes. T power spectrum to icott (RP) resonan the usefulness of

Next chapter: systems biology

```
Differential equations \(\mathrm{d} C(\mathrm{t}) / \mathrm{dt}=f(C(\mathrm{t}))\)
```

> Biochemical kinetics
> $\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C}$

Next chapter: systems biology

Next chapter: systems biology

Bacterial signal transduction: two-component systems

Bacterial signal transduction: two-component systems

Signal
Metal ions, small molecules, pH , etc.

Different species of enteric bacteria use distinct architectures to

 activate $\mathrm{pbg} P$ by low Mg^{2+}Direct pathway
Yersinia pestis

Different species of enteric bacteria use distinct architectures to activate $\mathrm{pbg} P$ by low Mg^{2+}

Direct pathway
Yersinia pestis

Connector-mediated pathway
Salmonella enterica

Different species of enteric bacteria use distinct architectures to activate $\mathrm{pbg} P$ by low Mg^{2+}

What are the functional implications of this?

Physiology, survival, evolution, ...

Connector-mediated pathway promotes signal amplification

Computation

Connector-mediated pathway promotes signal amplification

Computation

Experiment

Induction ratio = mRNA level (inducing conditions) / mRNA level (repressing conditions)

Connector-mediated pathway promotes signal amplification

Computation

Experiment

[^0]
Blood coagulation and traumatic coagulopathy

Blood coagulation system

Mitrophanov et al., Mol Biosyst (2014)

Blood coagulation and traumatic coagulopathy

Blood coagulation system

Mitrophanov et al., Mol Biosyst (2014)
\square
Computational kinetic modeling

```
C(t) = species concentration;
dC(t)/dt = (production rate)
    - (depletion rate)
```


Blood coagulation and traumatic coagulopathy

Blood coagulation system

In vitro experiments (blood plasma)

Mitrophanov et al., Mol Biosyst (2014)
\square
Computational kinetic modeling

```
C(t) = species concentration;
dC(t)/dt = (production rate)
    - (depletion rate)
```


Blood coagulation and traumatic coagulopathy

Blood coagulation system

Mitrophanov et al., Mol Biosyst (2014)

Computational kinetic modeling

In vitro experiments (blood plasma)

Comparison: validation

Blood coagulation and traumatic coagulopathy

Blood coagulation system

In vitro experiments (blood plasma)

Mitrophanov et al., Mol Biosyst (2014)

Computational kinetic modeling

Comparison: validation

Thrombin generation in blood plasma

Normal plasma

$$
\text { prothrombin } \rightarrow \text { thrombin }\left(\begin{array}{l}
\text { fibrinogen } \\
\text { fibrin } \rightarrow \text { blood clot }
\end{array}\right.
$$

Thrombin generation in blood plasma

Normal plasma

Dilution reduces peak height
prothrombin \rightarrow thrombin $\left(\begin{array}{l}\text { fibrinogen } \\ \text { fibrin } \rightarrow \text { blood clot }\end{array}\right.$
Mitrophanov et al., Anesth Analg (2016)

Restoring reduced thrombin generation in plasma

Simulations*


```
PCC-FVII = FII + FIX + FX + FVII
strong procoagulants
PCC-AT = FII + FIX + FX + antithrombin
procoagulants + anticoagulant
```


Restoring reduced thrombin generation in plasma

Simulations*

Experimental data**

strong procoagulants
procoagulants + anticoagulant

Wound-healing research

Nagaraja et al., J Immunol (2014)

- Inflammation
- Proliferation
- Angiogenesis

Wound-healing research

Nagaraja et al., J Immunol (2014)

Some findings

- Inflammation
- Proliferation
- IL-6 as biomarker of chronic inflammation
- Angiogenesis

From systems biology to (biomedical) data science

NOT just a simple regression!

- Statistical model selection
- Variable selection

Mitrophanov et al., Arterioscler Thromb Vasc Biol (2020)

From systems biology to (biomedical) data science

NOT just a simple regression!

My data science:
The knowledge and understanding of robust patterns and relationships between variables in data sets.

- Statistical model selection
- Variable selection

Current work

Mutation pathogenicity annotation in BRCA2-oncogene variants

Current work

Mutation pathogenicity annotation in BRCA2-oncogene variants

Red: pathogenic variant
Blue: neutral variant
Black: status unknown

Current work

Mutation pathogenicity annotation in BRCA2-oncogene variants

Red: pathogenic variant
Blue: neutral variant
Black: status unknown

Current work

Mutation pathogenicity annotation in BRCA2-oncogene variants

Approach: statistical mixture modeling; semi-supervised learning

Joint work with Kajal Biswas, Shyam Sharan, and Tyler Malys

THANKS!!!

[^0]: Induction ratio = mRNA level (inducing conditions) / mRNA level (repressing conditions)

