My Journey Through Computational Biology

Alexander (Alex) Mitrophanov, PhD

Senior Statistician
FNLCR/NIH/DMS/BRMi

ABCS “Meet and Greet”
4 June 2021



8
’ Batin |
T
) 1ay
Cubs
Pusrto R
wiboar
> DD
Venezuela
Gayana
Colombis Suriname
Eovador
Brazil
D
Balivia

“ Paraguay

e here to search

W
Greenland
Icalano Sweden
Fmiand
Norway
i San
United Denmark
Kingdom Belarus
irelond Poland
Germany
Ukrame
Austiie Kazakhstan
France -
, Romanéa
Italy
Spain Uzbekistan
Grooce T Turkmenistan
Portugal -5 f urkmenistar
Not
: Synla
i Turnisls Afghanistan
Iraq -
lran
Pakistan
Algernia
Alge Libya Egypt
Westem
Sshara Saud| Arabia
Orvan
Mauritania
Mall Niger -
Sucan ame
Chad Yomen
Burking Sultar A 1t 1 Gou
. Faso .
inea
Negenia
\ 3 - Ethicpla
South Sudan pia
1,07 Somalla
Kenys
Gabon e
DRC
Tanzania
ngol
Angola Zambia
Mozambsque
Namibla Zimbabwe

Madagoascar
Bolswana

Russia
|
(8151 .
Mongolia
i
4 ) £ Japan
China South Korea
Not
R Pacii
Nepa >
India Myanmar
(Burma) tulipipitie Bas
Thailand
Boy of Deng) Vietnam Philippines

Malaysia

Indonesis

Papus New

...but let’s focus on science.

a)

ndian

wrms  Privacy

Sendd teedback 100

209 PM
6/1/2021

~ & . ]

B



“We all began as something else...”
(The Chronicles of Riddick)

The Purifier



Mathematics of system stability
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Mathematics of system stability

Parameter value 1 \
Parameter value 2 /

— Output level 1
- Qutput level 2

How can we guantify/predict stability?
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Stability, chemical kinetics, and Markov chains

K,
A+B<T>AB

Parameters
= jnitial concentrations (“Type 17)
= rate constants k., k_ (“Type 27)

Markov chain: molecular

interconversions ‘ states

Type-1 quantification

»

stability Main result!

Type-2
stability

(species)

transitions
g (reactions)

Q :(qij)

transition rate matrix (rate constants)

p(t) = (p; (1))

state probability vector

dp(t)/dt=p(t)Q

governing equation
(Kolmogorov differential equation)



Recent applications of the theory
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Recent applications of the theory

Perturbation bounds for quantum Markov processes

JOURNAL OF MATHEMATICAL PHYSICS 54, 032203 (2013)
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Recent applications of the theory
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Despite the importance of uncertainties encountered in climate
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dynamical systems, the associated low-frequency variability may
be formulated in terms of Ruelle-Pollicott (RP) resonances. RP res-
onances encode information on the nonlinear dynamics of the
system, and an approach for estimating them—as filtered through
an observable of the system—is proposed. This approach relies on
an appropriate Markov representation of the dynamics associated
with a given observable. It is shown that, within this representa-
tion, the spectral gap—defined as the distance between the sub-
dominant RP resonance and the unit circle—plays a major role in
the roughness of parameter dependences. The model statistics are
the most sensitive for the smallest spectral gaps; such small gaps
turn out to correspond to reglmes where the low-frequency vari-
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Recent applications of the theory
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Biology??

= Molecular dynamics simulations

= General biochemical kinetics
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Next chapter: systems biology
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Bacterial signal transduction: two-component systems
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Bacterial signal transduction: two-component systems

Signal Metal ions, small molecules, pH, etc.

Sensor LG LGIT x Sensor kinase

Response regulator

Regulatory circuit

Effectors

Response
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Different species of enteric bacteria use distinct architectures to
activate pbgP by low Mg?#*
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Different species of enteric bacteria use distinct architectures to
activate pbgP by low Mg?#*

Direct pathway Connector-mediated pathway
Yersinia pestis Salmonellaenterica
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Different species of enteric bacteria use distinct architectures to
activate pbgP by low Mg?#*

What are the functional implications of this?

Physiology, survival, evolution, ...




Connector-mediated pathway promotes signal amplification

Computation
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Induction ratio = mRNA level (inducing conditions) / mRNA level (repressing conditions)

Kato, Mitrophanov, Groisman, PNAS (2007)



Connector-mediated pathway promotes signal amplification

Computation Experiment
1000
| 1000 4 N=2
e} Connector pathway ) Connector pathway
g S T 100
c ~ c |
8 e s |
g 10} Direct pathway\\_ 2 10 _.
T 1 =
= | £
< ! <
<
& L] c 1
£ | =
0.1 . : - 0.1 T T 1
1.5 1 0.5 0.0f 0.1 1 10
[PhoP-P] (Arbitrary units) [MgCl,] (mM)

Induction ratio = mRNA level (inducing conditions) / mRNA level (repressing conditions)

Kato, Mitrophanov, Groisman, PNAS (2007)



Connector-mediated pathway promotes signal amplification

Computation Experiment

1000 | —
§ 1000- N=2
Connector pathway 100;
100
‘ 10+

e

10} Direct pathway ——~__

% Survival
o

MRNA induction ratio

0011 Polymyxin B
0001 resistance I
0.1 . s 0.0001 T r H?
1.5 1 0.5 0.01 0.1 1 10
[PhoP-P] (Arbitrary units) [MgCL] (mM)
2

Induction ratio = mRNA level (inducing conditions) / mRNA level (repressing conditions)

Kato, Mitrophanov, Groisman, PNAS (2007)



Blood coagulation and traumatic coagulopathy

Blood coagulation system
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Mitrophanov et al., Mol Biosyst (2014)



Blood coagulation and traumatic coagulopathy

Blood coagulation system

Fnll, (Fnll),

'FPB

Mitrophanov et al., Mol Biosyst (2014)
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Computational kinetic modeling

C(t) = species concentration;

dC(t)/dt = (production rate)
— (depletion rate)




Blood coagulation and traumatic coagulopathy

Blood coagulation system In vitro experiments
(blood plasma)
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Blood coagulation and traumatic coagulopathy

Blood coagulation system In vitro experiments
(blood plasma)

Fnll, (Fnll),

Fg—~Fnl, (Fnl),—= <

oronapathology.org

“EpA ‘FPB

Mitrophanov et al., Mol Biosyst (2014) ﬁ

Computational kinetic modeling Comparison: validation

C(t) = species concentration;

dC(t)/dt = (production rate) | >
— (depletion rate)

[Thrombin]




Blood coagulation and traumatic coagulopathy

Blood coagulation system In vitro experiments
(blood plasma)
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Mitrophanov et al., Mol Biosyst (2014)
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Computational kinetic modeling
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Thrombin generation in blood plasma

Normal plasma

Simulation

[Thrombin] (nM)

0 5 10
Time (min)

15

prothrombin - thrombin

fibrinogen
fibrin 2 blood clot

Mitrophanov et al., Anesth Analg (2016)



Thrombin generation in blood plasma

Normal plasma

Simulation

[Thrombin] (nM)

0 5 10
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Dilution reduces peak height

Mitrophanov et al., Anesth Analg (2016)



Restoring reduced thrombin generation in plasma

Simulations*
700,
- Normal blood
J 600 A — Diluted blood
S 500! // \\ —— PCC-FVII
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£ 300 :
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PCC-FVII=FIl + FIX+ FX + FVII strong procoagulants
PCC-AT =FIl + FIX + FX + antithrombin procoagulants + anticoagulant

*Mitrophanov et al., J Trauma (2012)



Restoring reduced thrombin generation in plasma

Simulations* Experimental data**
% Normal blood 500
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J 600 /\ — Diluted blood -
S50 [ —— PCC-FVII < 400, §
B |— PCC-AT - :
=400 / T 300} ) :
2 200 \ £ '
S 300 S 20k it
£ 200 Mo £ T
100/ e 100 e
0 10 20 30 0
Time (min) Time (min)
PCC-FVII=FIl + FIX+ FX + FVII strong procoagulants
PCC-AT =FIl + FIX + FX + antithrombin procoagulants + anticoagulant

*Mitrophanov et al., J Trauma (2012) **Mitrophanov et al., Anesth Analg (2016)



Wound-healing research
”xg wound site

Cells
wounded tissue @ Ppiatelet

@ Active neutrophil

@ Apoptotic neutrophil

4 Pro-inflammatory macrophage
&# Anti-inflammatory macrophage

W platelet plug \ TGF-B

Cytokines and growth factors

TNF-g, IL-1B, IL-6, IL-10, IL-12,
CXCL8, MIP-1a, MIP-2, IP-10,
TGF-8, and PDGF

----- + Chemotaxis/migration
——— Secretion/activation

-----» Differentiation
i |nhibition

‘ Q o /" Horde o - /"

blood vessel lymph vessel

Nagaraja et aI J Immunol (2014)

= |nflammation
= Proliferation
= Angiogenesis




Wound-healing research
R ,aﬁﬂﬁﬁ,p A0g _voundste
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L R e R
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/ /‘h}jﬁ{,} | TGF.and POGF Predicted biomarkers and
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blood vessel lymph vessel

Nagaraja et al., J Immunol (2014)

Some findings

" Inflammation = |L-6 as biomarker of chronic inflammation
" Proliteration = Unique influence of TGF-B throughout wound healing
= Angliogenesis




From systems biology to (biomedical) data science

NOT just a simple regression!
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=  Statistical model selection
= Variable selection

Mitrophanov et al., Arterioscler Thromb Vasc Biol (2020)



From systems biology to (biomedical) data science

NOT just a simple regression!

59 /I\/Iy data science: N
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The knowledge and understanding of robust
patterns and relationships between variables
\in data sets. J
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=  Statistical model selection
= Variable selection

Mitrophanov et al., Arterioscler Thromb Vasc Biol (2020)
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Mutation pathogenicity annotation in BRCA2-oncogene variants

Joint work with Kajal Biswas, Shyam Sharan, and Tyler Malys
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Mutation pathogenicity annotation in BRCA2-oncogene variants

Variant 1
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Variant N
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foreach Algorithm oflmpqlre
variant unction
A

(PIFs)
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Red: pathogenic variant
Blue: neutral variant
Black: status unknown

Joint work with Kajal Biswas, Shyam Sharan, and Tyler Malys



Probability of impaired function
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Current work

Mutation pathogenicity annotation in BRCA2-oncogene variants

Approach: statistical mixture modeling; semi-supervised learning

T 3 rmmmE— - pathogenic-status threshold
O Pathogenic variant N = 110
i O Neutral variant
O Status unknown
O
| Q Neutral-status threshold

PIF-ordered variant index

Joint work with Kajal Biswas, Shyam Sharan, and Tyler Malys
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